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Abstract

Complex games such as RTS games are naturally formalized
as Markov games. Given a Markov game, it is often possi-
ble to hand-code or learn a set of policies that capture the
diversity of possible strategies. It is also often possible to
hand-code or learn an abstract simulator of the game that can
estimate the outcome of playing two strategies against one
another from any state. We consider how to use such policy
sets and simulators to make decisions in large Markov games.
Prior work has considered the problem using an approach we
call minimax policy switching. At each decision epoch, all
policy pairs are simulated against each other from the current
state, and the minimax policy is chosen and used to select
actions until the next decision epoch. While intuitively ap-
pealing, we show that this switching policy can have arbitrar-
ily poor worst case performance. In response, we describe a
modified algorithm, monotone policy switching, whose worst
case performance, under certain conditions, is provably no
worse than the minimax fixed policy in the set. We evalu-
ate these switching policies in both a simulated RTS game
and the real game Wargus. The results show the effectiveness
of policy switching when the simulator is accurate, and also
highlight challenges in the face of inaccurate simulations.

1 Introduction
In some complex games such as real-time strategy (RTS)
games, the space of possible actions is much too large for an
agent to reason about directly. A successful agent requires
some form of abstraction to reduce the effective branch-
ing factor. One approach is to create a set of fixed policies,
each of which fully specifies the primitive actions to take
in each state, that captures the diversity of possible behav-
iors or strategies. The reasoning problem is then reduced to
choosing among the policies.

It is often possible to hand-code or learn an abstract simu-
lator of the game that can be used to estimate the outcome of
playing two policies against one another starting from an ar-
bitrary state. Given such a simulator, one could simulate all
policy pairs against one another from the initial game state
and pick the policy that achieves some criterion of optimal-
ity, such as the minimax policy. However, we might won-
der whether we can do better than choosing a single, fixed
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policy by occasionally re-evaluating our choice and possi-
bly switching to a different policy. Since policy switching
does not consider future actions when deciding whether to
switch, its cost is linear in the length of the game, compared
to the exponential cost of solving the full Markov game. In
this work, we investigate the formal properties of one such
policy switching approach, and provide a preliminary evalu-
ation of its effectiveness in an RTS game.

Prior work (Chang, Givan, and Chong 2004) has inves-
tigated policy switching in the setting of (non-adversarial)
Markov decision processes (MDPs). In that work, at each
state s a simulator is used to estimate the value of each
policy in a given set and the policy with the highest value
is executed. The key result was to show that the value of
the switching policy is never worse than the value of the
best policy in the set. Further, in practice the switching pol-
icy is often significantly better than any individual policy
in the set. In less closely related work, Comanici and Pre-
cup (2010) study how to learn a meta-policy for switching
between policies in a set. This approach does not require a
simulator to estimate policy values, but rather requires sub-
stantial experience in the target environment for learning and
a meta-policy representation that facilitates generalization.

Policy switching has also been investigated in the adver-
sarial setting of Markov games. Sailer, Buro, and Lanctot
(2007) used a policy switching approach to switch between
military strategies in an abstract RTS game. Given a set of
strategies, they simulate all pairs against one another at each
decision epoch and select one according to either a minimax
or Nash criterion. This approach was shown to work well,
outperforming the individual policies provided to the sys-
tem. A formal analysis of this type of switching approach
was provided by Chang (2006), who gave a bound on the dif-
ference between the worst-case (i.e. minimax) performance
of the switching policy versus the best fixed policy in the set.

Our first contribution is to show that the above perfor-
mance bound can be arbitrarily large and is in fact a tight
bound. Thus, unlike the case of MDPs, the straightforward
way of formalizing policy switching for Markov games can
perform arbitrarily poorly compared to a fixed policy. Next,
we define a modified approach that is guaranteed to be no
worse than a fixed policy, up to an error term describing
the accuracy of the simulator. Finally, we summarize exper-
imental results from applying policy switching to an RTS



game agent, which provide evidence for the effectiveness of
policy switching and also highlight the impact of having an
inaccurate simulator.

2 Minimax Policy Switching
A two player, zero-sum Markov game is a tuple,
(S, A1, A2, P, c), where S is a set of states, A1 and A2 are
the actions sets for the minimizing and maximizing players
respectively, P : S × A1 × A2 × S 7→ [0, 1] is the tran-
sition probability distribution, and c : S × A1 × A2 7→ R
is the instantaneous cost function that assigns a cost to each
pair of action choices in each state. A policy for a player is a
possibly stochastic mapping from states to actions, possibly
depending on time in the case of non-stationary policies.

We will consider a finite-horizon Markov game setting
with horizon H . To simplify our notation we will assume
that the only non-zero costs are received at the horizon (i.e.
the end of the game). This is without loss of generality, since
any finite-horizon Markov game, can be converted into an
equivalent Markov game of this form. The h steps-to-go cost
(with respect to the minimizer) of minimizer policy π and
maximizer policy φ starting in state s ∈ S is

Ch(π, φ)(s) = E
n hX

t=0

c(Sh−t, π(Sh−t), φ(Sh−t))
˛̨̨
Sh = s

o
where Sk is a random variable denoting the state when there
are k steps to go.

The policy switching approaches that we consider assume
the availability of policy sets for the minimizing and maxi-
mizing agent, denoted by Π and Φ respectively. Ideally the
policy sets capture the typical policies that one might en-
counter in actual game play and may be the same for the
minimizer and maximizer. The minimax cost with respect to
these sets for a given state s and horizon h is defined as

MMCh(Π,Φ)(s) = min
π∈Π

max
φ∈Φ

Ch(π, φ)(s).

We also define the minimax policy for s and h, de-
noted by MMPh(Π,Φ)(s), to be a minimizer policy that
achieves the minimax cost. That is, a policy π∗ such that
maxφ∈Φ Ch(π∗, φ)(s) = MMCh(Π,Φ)(s). Here we as-
sume that ties are broken deterministically using a lexico-
graphic order over policies.

The minimax switching policy denoted by πps(s, h), from
Chang (2006) and Sailer, Buro, and Lanctot (2007), can now
be defined as

πps(s, h) = π∗h(s)
π∗h = MMPh(Π,Φ)(s)

We see that πps(s, h) simply selects a policy pair that
achieves the minimax value with respect to Π and Φ and
then returns the action selected by the minimizer policy. In
practice the cost function Ch(π, φ)(s) cannot be evaluated
exactly and hence Monte Carlo simulation using a possibly
approximate simulator is used to estimate costs required for
computing the minimax policy.

A question now is what guarantees if any can be made
about the performance of πps. Recall that in MDP policy
switching, one can show that the switching policy will do

no worse than the best policy in the set. An analogous result
for minimax policy switching would show that the switch-
ing policy has a worst case behavior (with respect to Φ) that
is no worse than the best worst case behavior of any fixed
policy in Π (i.e. the minimax policy). That is, we would like
to say that for any horizon h and state s,

max
φ∈Φ

Ch(πps, φ)(s) ≤ min
π∈Π

max
φ∈Φ

Ch(π, φ)

If we believe that the set of opponent policies Φ is suffi-
ciently rich to capture the typical range of opponents to be
encountered, then this guarantee is quite powerful, since we
can gain the potential benefits of switching without a down-
side.

Chang (2006) provided a first result in this direction,
showing a looser bound. Note that while the original result
is in an infinite-horizon discounted cost setting, the result is
easily modified for our finite horizon setting. His bound is
in terms of the difference between the cost of the minimax
policy and the best possible cost for the minimizer assuming
a helpful adversary,

ε = max
s∈S

“
min
π∈Π

max
φ∈Φ

C(π, φ)(s)−min
π∈Π

min
φ∈Φ

C(π, φ)(s)
”
,

where C(π, φ)(s) is the expected discounted future cost of
playing π and φ starting from state s. Using this error term,
Chang then shows that the worst-case performance of the
switching policy is bounded by

max
φ∈Φ

C(πps, φ)(s) ≤ min
π∈Π

max
φ∈Φ

C(π, φ)(s) +
γε

1− γ

for all s ∈ S, where γ is the discount rate.
Unfortunately, this bound is not very informative because

it involves ε, and ε can be arbitrarily large. Since ε measures
the difference between the minimax value and the best-case
value, it is small precisely when the maximizer’s choice of
policy has little influence over the cost; specifically, when
the minimizer has a response to every maximizer action that
achieves close to the best-case cost. Intuitively, when this
is the case, the minimizer does not need to consider future
moves when deciding the current move, since there will al-
ways be a near best-case response to anything the maximizer
does.

The question remains of whether the bound is tight. If it
is, then there is a fundamental deficiency in minimax policy
switching, in that the switching policy may perform arbitrar-
ily poorly compared to a fixed policy. We now show that this
is indeed the case, with the following counterexample.

Consider a deterministic Markov game with two states,
horizon one, and two policies each for the minimizer (π1

and π2) and the maximizer (φ1 and φ2). The game begins in
state s0. From there, the game deterministically transitions
to state sij , with i and j determined by the actions πi and
φj taken in s0. The cost functions are defined in terms of an
arbitrary positive constant c. The instantaneous cost func-
tions for this game (i.e. the costs of the actions chosen by
the policies) for each pair of policies in each state is given
by

c(s11) φ1 φ2

π1 −1 c + 1
π2 c c

c(s12) φ1 φ2

π1 c + 1 −1
π2 c c



c(s21) φ1 φ2

π1 c c
π2 0 c + 1

c(s22) φ1 φ2

π1 c c
π2 c + 1 0

The 1-horizon cost function for this game is
C1(s0) φ1 φ2 max minimax
π1 −1 −1 −1 *
π2 0 0 0

The minimax fixed policy in this game is π1, which
achieves a worst-case cost of−1. Now consider the behavior
of πps. Starting in s0, policy π1 will be chosen since it has a
1-horizon minimax value of−1. Suppose that the maximizer
arbitrarily chooses φ1 in response. There is no cost in s0, and
the game deterministically transitions to s11. In s11, π2 is the
minimax choice, and πps selects it, causing the minimizer to
receive a cost of c. The result is the same if the maximizer
chooses φ2 in s0. Thus, the worst case performance of πps is
equal to c, while the fixed policy π1 achieves a worst case of
−1. This shows that minimax policy switching can perform
arbitrarily poorly with respect to worst case performance,
even in a game with only terminal costs.

Minimax policy switching achieves an arbitrarily high
cost because the definition of Ch(π, φ)(x), which is used
to select a policy at horizon h, assumes that the chosen poli-
cies will be followed forever. However, this assumption is
inconsistent with the fact that at future time steps πps has
the option of switching policies. In the above example, we
see the consequences of this inconsistency. At s0, the policy
π1 looks good under the assumption that both players will
follow their chosen policies for the rest of the game. When
arriving at s11, however, the algorithm forgets about this as-
sumption and decides to move away from π1, receiving a
cost of c.

3 Monotone Policy Switching
There are at least two ways to overcome the inconsistency
inherent in minimax policy switching in order to improve its
worst case performance. First, when making switching de-
cisions, the algorithm could reason about the possibility of
both players switching strategies at future times. Reasoning
about those possibilities, however, amounts to solving the
Markov Game, which is generally not going to be practi-
cal and does not exploit the provided policy sets. A second
approach is to have future decisions account for the assump-
tions made at previous time steps, by considering the possi-
bility that both players do not switch away from the current
minimax policy pair. In this paper, we consider this second
approach, which we call monotone minimax policy switch-
ing.

Monotone policy switching is nearly identical to minimax
policy switching except that at each step it takes into consid-
eration the minimax policy π∗ selected in the previous step,
and its expected cost c∗. At horizon h and current state s,
monotone switching will only consider switching to a new
policy π if the worst case cost of π is better than c∗. Other-
wise, π∗ is again selected in state s, and c∗ is maintained as
the expected cost.

More formally, let sh denote the state with h steps-to-go
and π̄h(π∗h+1, c

∗
h+1) denote the monotone switching policy

at horizon h parameterized by the minimax policy π∗h+1 se-
lected at the previous time step (with h + 1 steps-to-go) and
its expected cost c∗h+1. To simplify notation, we will use
θh = (π∗h, c∗h) to denote the parameter vector.

With these definitions, we can define the monotone
switching policy recursively in two cases:
If c∗h+1 ≤ MMCh(Π,Φ)(sh):

π∗h = π∗h+1

c∗h = c∗h+1

If c∗h+1 > MMCh(Π,Φ)(sh):

π∗h = MMPh(Π,Φ)(sh)
c∗h = MMCh(Π,Φ)(sh)

The action selected by the monotone switching policy is
simply the action prescribed by its current policy choice,

π̄h(π∗h+1, c
∗
h+1)(sh) = π∗h(sh).

From this definition, one way to view π̄ is simply as min-
imax policy switching in which the minimizer can suppress
the option to switch if switching would be worse for the min-
imizer than sticking to the policy pair from the previous step.
Note that at the first time step in initial state sH , where H
is the problem horizon, there is no previous policy, so we
define θH+1 to be the null vector θnull = (null,+∞). This
causes the choice at the first time step to behave just as in
minimax policy switching.

It turns out that we can prove the desired worst case guar-
antee for monotone policy switching, at least in the case of
deterministic transitions. We conjecture that it also holds in
the case of stochastic transitions. We now state the main re-
sult.
Theorem 3.1. For any Markov game (S, A1, A2, P, c) such
that P is deterministic, for any state s ∈ S and horizon h,

max
φ∈Φ

Ch(π̄h(θnull), φ)(s) ≤ min
π∈Π

max
φ∈Φ

Ch(π, φ)(s).

Conjecture. Theorem 3.1 holds for stochastic P as well.

4 Experiments
We have constructed a game-playing agent for the free RTS
game Wargus that uses policy switching to manage its high-
level strategy. Because of the complexity of RTS games, all
full-game agents we are aware of, including ours, have re-
lied on scripted behaviors to perform most gameplay tasks.
A key advantage of the policy switching approach is that it
offers a principled way of incorporating a limited amount of
AI into a script-based system: the AI system can choose be-
tween high-level scripted behaviors, rather than attempting
to produce a similar behavior from first principles.

Our policy-switching agent uses a simulator to estimate
the value of each strategy pair, and selects the strategy with
the best simulated value. We present both simulation results
and results from gameplay against the built-in Wargus AI.
Due to space constraints, we can present only a representa-
tive selection of our results; the full results are available in
(King 2012).



4.1 Strategy Set
We define a strategy as a prioritized assignment of a cer-
tain number of units to each of several goal locations. For
these experiments, we defined three goal locations for each
map: the friendly base (“base”), the enemy base (“enemy”),
and the choke point separating our base from the enemy
(“chokepoint”). A strategy specifies the number of units we
want to assign to each goal, and a priority ordering such that
goals with higher priority are pursued first. Though sim-
ple, this formulation gives us quite a bit of flexibility in
defining strategies. For example, defensive strategies are ob-
tained when “base” and “chokepoint” have higher priority
than “enemy”. Similarly, early aggression can be specified
by prioritizing “enemy” and assigning a smaller number of
units (so that they will be ready sooner). Some representa-
tive strategy definitions are given in Table 1.

Goal priority Units per goal
base enemy chkpt. base enemy chkpt.

0. balanced 7 1 3 2 7 7 7
4. rush 7 1 3 2 5 7 3
7. offensive 5 0 1 0 0 5 0

Table 1: Selected strategies from our strategy set.

At regular intervals throughout the game, the agent sim-
ulates various strategy choices against one another, and
switches strategies if the current strategy is found to be
worse than an alternative. We used two agents for the ex-
periments. The minimax agent implements simple minimax
policy switching as described by Chang (2006), while the
monotone agent implements our monotone policy switching
algorithm described above.

4.2 Simulation Results
We implemented a deterministic simulator that can compute
the value of different strategy pairs. Our first results com-
pare the monotone switching algorithm to the ordinary min-
imax switching algorithm using the simulation results as the
measure of success. We ran simulations for two different
game maps, called 2bases and the-right-strategy. The results
for the fixed minimax policy and the two different policy
switching algorithms are shown in Table 2.

Score Fixed minimax monotone
2bases 0 -8122 -8122
the-right-strategy 0 -2702 -5375

Table 2: Simulation results comparing the fixed minimax policy to
the two switching algorithms on two different game maps.

Both switching algorithms outperform the minimax fixed
policy, and the monotone algorithm outperforms the mini-
max switching algorithm on one of the maps.

4.3 Gameplay Results
We also examined the algorithms’ performance in actual
gameplay on the same two maps. Because the values of ac-
tions are computed with a simulator, an inaccurate simulator

could affect the results. Our experiments show that our sim-
ulator is accurate for some strategies, but less accurate for
others (Figure 1). One likely source of error is that the simu-
lator estimates combat strength based only on unit numbers
and types, while in reality terrain has a large effect on the
outcomes of battles.

Score Fixed minimax monotone
2bases 630 242 749
the-right-strategy 86 588 814

Table 3: Gameplay results comparing games scores for the fixed
minimax policy and the two switching algorithms on two different
game maps.

2bases Fixed minimax monotone
Fixed 46% 49% 45%
minimax - - 48%
monotone - 52% -
built-in - 100% 100%

the-right-strategy Fixed minimax monotone
Fixed 50% 45% 42%
minimax - - 42%
monotone - 58% -
built-in - 57% 57%

Table 4: Empirical win rates for the column player for matchups
between the minimax fixed policy, the two switching policies, and
the built-in Wargus AI. Win rates are statistically identical within
every row.

Whereas policy switching outperformed the minimax
fixed policy in simulation, the results are inconclusive for
actual gameplay (Table 3). We attribute this to the inaccu-
racy of the simulator. It seems that tactical factors that the
simulator does not account for have a significant impact on
performance.

The win rates of the various algorithms when played
against one another (Table 4) show that the switching poli-
cies achieve a similar win rate to the minimax fixed policy.
Policy switching is not guaranteed to be strictly better than
the fixed policy, so these results are consistent with theory,
accounting for inaccuracies in the simulator.

5 Summary and Future Work
Unlike in the single-agent, MDP setting, policy switching
based on a local optimality criterion is not guaranteed to
improve performance versus a fixed policy in adversarial
Markov games. We have shown that there exist Markov
games in which straightforward policy switching will pro-
duce the worst possible result. To remedy this, we have pro-
posed monotone minimax policy switching, which is guar-
anteed to perform at least as well as any fixed policy when
the simulator is perfect. For imperfect simulation, there is a
potential additional worst-case cost that depends on the sim-
ulation accuracy.

Our monotone algorithm achieves its performance guar-
antee with respect to the best fixed policy. When the oppo-
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Map: the-right-strategy
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Figure 1: Comparison of simulated versus actual minimax costs for minimizer policies on maps 2bases (left) and the-right-strategy (right).

nent policy set captures the typical range of strategies that
will be encountered, this is a strong guarantee. However, we
are also interested in developing switching algorithms that
provide guarantees with respect to a bounded amount of op-
ponent switching. Our results also point to the importance of
the simulator for the policy switching approach. Currently
the simulator is fixed and does not adapt even when large
simulation errors are observed. We would like to integrate
the system with a simulator learning component that im-
proves simulation accuracy over time. Finally, the current
approach does not take into account an opponent model,
which could provide evidence about the likelihood that the
opponent is following different policies. We would like to
understand how to best take such a model into account in a
policy switching framework.
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