
MCTS State Abstraction

Monte Carlo Tree Search with
Fixed and Adaptive State Abstractions

Jesse Hostetler hostetje@eecs.oregonstate.edu

Alan Fern afern@eecs.oregonstate.edu

Thomas Dietterich tgd@eecs.oregonstate.edu

Oregon State University, Department of Electrical Engineering and Computer Science,

Corvallis, OR 97331 USA

Abstract

Monte Carlo tree search (MCTS) is a popular approach to solving Markov decision
problems with large state spaces due to the relative insensitivity of MCTS algorithms to
the size of the state space. The limiting factor in the performance of tree search tends
to be the exponential dependence of sample complexity on the depth of the tree. The
number of samples required to build a search tree is O((|A|B)d), where |A| is the number
of available actions, B is the number of possible random outcomes of taking an action,
and d is the depth of the tree. State abstraction can be used to reduce B by aggregating
random outcomes together into abstract states. Recent work has shown that abstract tree
search often performs substantially better than tree search conducted in the ground state
space. This paper presents a theoretical and empirical evaluation of tree search with both
fixed and adaptive state abstractions. We derive a bound on performance loss due to state
abstraction in tree search that decomposes abstraction error into three components aris-
ing from different properties of the abstraction. We describe versions of popular MCTS
algorithms that use fixed state abstractions, and we introduce the Progressive Abstraction
Refinement in Sparse Sampling (PARSS) algorithm, which adapts its abstraction during
search. We evaluate PARSS as well as tree search with fixed abstractions on 12 experi-
mental domains, and find that PARSS outperforms tree search with a fixed representation
and that search with even highly inaccurate fixed abstractions outperforms search without
abstraction. These results establish progressive abstraction refinement as a promising ba-
sis for new tree search algorithms, and we propose directions for future work within the
progressive refinement framework.

1. Introduction

Sequential decision-making problems of practical interest often have large state spaces.
Scaling up Markov decision process (MDP) solvers to handle these large state spaces is an
ongoing challenge. Reinforcement learning approaches, which typically compute a complete
policy that is defined in all states, may be prohibitively expensive in these problems since
their time complexity necessarily depends on the size of the state space. An alternative is
to compute only a partial policy, defined in only a subset of the state space. This is the
principle of online planning (OP). OP algorithms estimate the optimal action in one state
at a time, only in those states that are actually encountered during execution. Because a
single execution trajectory visits only a relatively small number of states, OP algorithms
can achieve good performance while enumerating only a small subset of the state space.

1

Within the online planning family, Monte Carlo tree search (MCTS) algorithms [Browne
et al., 2012] and particularly the UCT algorithm [Kocsis and Szepesvári, 2006] have risen to
prominence, largely due to the success of UCT variants in the game of go [Gelly and Silver,
2007; Silver et al., 2016] and in other complex domains (e.g. [Balla and Fern, 2009; Guo
et al., 2014]). MCTS algorithms estimate the values of the available actions in the current
state s by sampling a tree of possible future trajectories rooted at s. The size of the search
tree, and thus the number of transition samples necessary to build it, is O((|A|B)d), where
|A| is the size of the action set, B is the maximum number of possible stochastic outcomes
of any action (the stochastic branching factor), and d is the search depth. The key property
of MCTS algorithms like UCT and sparse sampling (SS) [Kearns et al., 2002] is that they
achieve bounded value estimation error in the root state with a number of samples that
does not depend on the state space size. This property makes MCTS algorithms attractive
choices for problems like go that have large state spaces.

The primary disadvantage of MCTS and other OP algorithms is that they interleave
planning and execution. An online planning algorithm controlling a real system will always
face constraints on computational resources that limit how many samples can be drawn
before a decision must be made. The number of samples required theoretically to guarantee
meaningful error bounds is usually impractically large. In this anytime online planning
setting, the planner might have to halt and produce an answer at any time, so it is important
that the planner produces a reasonable initial solution quickly even if that solution is not
optimal. Any remaining planning time can then be spent improving the initial solution.

State abstraction is one way of trading optimality for speed. A state abstraction reduces
the size of the state space by treating some states as equivalent. State abstractions are
ubiquitous in applications of reinforcement learning, where they provide a direct benefit
because the time complexity of the algorithms depends on the state space size. Recently,
there has been increasing interest in applying state abstraction to MCTS algorithms as
well [Van den Broeck and Driessens, 2011; Jiang et al., 2014; Anand et al., 2015; Hostetler
et al., 2014, 2015]. Although the asymptotic complexity of MCTS does not depend on the
state space size, the stochastic branching factor B of a search tree is bounded by the size
of the state space, and thus an appropriate abstraction can reduce the sample complexity
of MCTS by reducing B. State abstraction introduces a new source of error, but the loss
in value due to abstraction can be bounded [Hostetler et al., 2014; Jiang et al., 2014].
Experimentally, abstract MCTS algorithms have been found to perform better than search
without abstraction in a variety of test domains [Jiang et al., 2014; Hostetler et al., 2015;
Anand et al., 2015].

This paper consolidates and expands upon work on state abstraction in MCTS that
first appeared in Hostetler et al. [2014] and Hostetler et al. [2015]. Hostetler et al. [2014]
derived a regret bound for a class of state aggregation abstractions applied to MCTS, and
described implementations of abstract UCT and abstract SS. These algorithms build search
trees with respect to a fixed abstraction, which must be provided as input. To address the
problem of abstraction specification, Hostetler et al. [2015] introduced the Progressive Ab-
straction Refinement for Sparse Sampling (PARSS) algorithm, which progressively refines
its state abstraction during search beginning from an initial coarse abstraction. The current
paper contributes an expanded discussion and analysis of the algorithms presented in these
two earlier papers, as well as a more comprehensive experimental evaluation of the PARSS

2

MCTS State Abstraction

algorithm, including new variations on the basic PARSS algorithm as well as additional
experimental domains. Our experimental results, consistent with earlier work, show that
PARSS achieves state-of-the-art performance among sparse sampling-based MCTS algo-
rithms and that search with fixed abstractions often outperforms search in the ground state
space. We also find that principled heuristics for controlling the abstraction refinement
process yield superior performance compared to uninformed strategies. This suggests a
direction for future work in learning to control the refinement process.

We begin the remainder of the paper by introducing background and notation for MDPs
and MCTS algorithms (Section 2). We view MCTS algorithms as methods for sampling an
approximate model of an MDP over state-action histories, and all of our algorithms and
theory are presented in this context. Section 3 formalizes state abstraction for tree search
and presents our main theoretical result, which decomposes the regret due to abstraction
into three components linked to different properties of the abstraction. In Section 4, we
show how the two main categories of MCTS algorithms can be modified to exploit fixed
state abstractions. We then present and analyze the PARSS algorithm (Section 5), and
describe several variations of PARSS based on different abstraction refinement strategies
(Section 6). Section 7 reviews related work. We then present our experiments with abstract
MCTS algorithms and their results in Sections 8 and 9. We conclude with a summary and
directions for future work in Section 10.

2. Background

Our work focuses on Monte Carlo tree search (MCTS) algorithms for anytime online plan-
ning in Markov decision processes (MDPs). We incorporate MDP state abstraction and
progressive abstraction refinement into MCTS algorithms to improve their anytime perfor-
mance. This section introduces notation and key concepts.

2.1 Markov Decision Processes

We consider MDPs of the form M = 〈S,A, P,R, γ〉, where S and A are finite sets of states
and actions, P (s′|s, a) is the transition probability function, R(s) gives the instantaneous
reward in s, and γ ∈ [0, 1] is the discount factor. We assume that rewards are bounded,
and without loss of generality that they lie in the unit interval, R(s) ∈ [0, 1].

A solution of an MDP is a policy π : S 7→ A that maps each state to an action. The
set of policies for an MDP M is denoted Π(M). An episode following policy π starting
from state s0 generates a sequence of states s0s1 . . . where each si ∼ P (·|si−1, π(si−1)) and
a corresponding sequence of rewards rt = R(st). The value of a policy is the expected
discounted sum of future rewards when following the policy,

V π(s) = E
[∞∑
t=0

γtrt

∣∣∣s, π],
where the expectation is over episodes of π sampled from P . The value function is more
commonly expressed in the equivalent recursive form

V π(s) = R(s) + γ
∑
s′∈S

P (s′|s, π(s))V π(s′).

3

We require that the value is bounded, meaning that there exist finite constants Vmin and
Vmax such that Vmin ≤ V π(s) ≤ Vmax for all s ∈ S and π ∈ Π. We exploit the assumption
of bounded rewards to derive these value bounds. A trivial lower bound is Vmin = 0. When
γ < 1, we have the upper bound Vmax =

∑∞
t=0 γ

t. If γ = 1, this series diverges, so we
require M to be a finite horizon MDP, meaning that there exists a finite constant D such
that t ≥ D ⇒ rt = 0 with probability 1 for any π. In the finite horizon case, Vmax = D is
an upper bound.

A policy π is optimal if V π = V ∗, where V ∗ is the optimal value function

V ∗(s) = R(s) + γmax
a∈A

∑
s′∈S

P (s′|s, a)V ∗(s′).

The optimal policy is greedy with respect to the optimal action-value function Q∗, meaning
that π∗(s) = arg maxa∈AQ

∗(s, a) where

Q∗(s, a) = R(s) + γ
∑
s′∈S

P (s′|s, a)V ∗(s′).

One can also define the Q-function of an arbitrary policy

Qπ(s, a) = R(s) + γ
∑
s′∈S

P (s′|s, a)V π(s′).

Many MDP algorithms, including the ones we consider, estimate the optimal policy by
estimating Q∗ and behaving greedily with respect to that estimate.

2.2 Anytime Online Planning

Online planning (OP) is a family of solution techniques united by the common theme of
planning for only one state at a time, as those states are encountered during execution. A
prototypical OP algorithm is policy rollout [Bertsekas and Castañon, 1999]. Policy rollout
improves a fixed policy π by implementing a new policy

πpr(s) = arg max
a∈A

Q̂π(s, a) (1)

that acts greedily with respect to an estimate of the Q-function of π. More sophisticated
online planning algorithms can be thought of as replacing Q̂π(s, a) with a different action
ranking function. The parallel rollout algorithm of Chang et al. [2004] replaces the single
rollout policy with a set of rollout policies. Policy switching [Chang et al., 2004; King et al.,
2013] is a similar algorithm that chooses the action prescribed by the best policy in the
policy set rather than the greedy action with respect to the estimated Q-function.

Because online planning methods compute a policy only for those states that are en-
countered during execution, their complexity is generally independent of the size of the
state space. This makes online planning a good fit for problems in which the state space
is large, especially if good decisions can be made based on local exploration. It is also
straightforward to incorporate diverse kinds of prior knowledge into the online planning
framework, including expert policies, action preferences, and state evaluation heuristics.

4

MCTS State Abstraction

In anytime online planning (AOP), we require that the planning algorithm can be halted
at any time to produce an answer. Typically, an AOP algorithm computes an approximate
solution quickly and then improves the solution incrementally until the algorithm is stopped.
Anytime algorithms are useful when the amount of time available for deliberation is un-
known or uncertain. For example, they can be combined with metareasoning algorithms
for allocating deliberation time across multiple decisions, such as when playing chess or go
with a full-game time limit.

2.3 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) [Browne et al., 2012] has become a leading approach
to AOP, due in large part to the success of variations of the UCT algorithm [Kocsis and
Szepesvári, 2006] in go [Gelly and Silver, 2007; Silver et al., 2016] and other complex domains
(e.g. [Balla and Fern, 2009; Guo et al., 2014]). MCTS algorithms simulate state-action
histories starting from the current state s0 and gather statistics of those history samples
into a search tree. The search tree is used to guide further sampling and ultimately to
estimate the optimal Q function Q∗(s0, ·) in the root state. The specifics of how sampling is
organized and how the estimate of Q∗ is obtained differentiate different MCTS algorithms.

We begin this section by introducing the notion of an MDP over state-action histories.
The history MDP will be the basis of our formal descriptions of MCTS algorithms. We then
introduce the two dominant paradigms for MCTS: sparse sampling and trajectory sampling.

2.3.1 MDPs over State-Action Histories

Given an MDP M = 〈S,A, P,R, γ〉 and a designated state s0 ∈ S, the set of state-action
histories beginning in s0 is the set H∗(M, s0) = {s0} × A × S × · · · . Note that H∗(M, s0)
may be infinite even though S is finite. The set of histories of length at most d is denoted
Hd(M, s0). Given a history h = s0a1s1 . . . atst, we write s(h)

def
= st and a(h)

def
= at for the

final state and action in the history, p(h)
def
= s0a1s1 . . . at−1st−1 for the prefix of h, and

`(h)
def
= t for the length of h.

A history MDP is an MDP T = 〈H,A, P,R, γ, s0〉 whose state space H is a subset of
H∗(M, s0) for the ground MDP M with the restriction that h ∈ H ⇒ p(h) ∈ H. The
dynamics of T are given by overloading the P and R functions to apply to histories,

P (h′|h, a)
def
= 1p(h′)=h1a(h′)=aP (s(h′)|s(h), a),

R(h)
def
= R(s(h)).

A policy π for a history MDP maps histories to actions, π : H 7→ A. The set of all policies
for T is denoted Π(T). We overload the value functions V and Q for history MDPs in the
obvious way,

V π(h) = R(h) + γ
∑
h′∈H

P (h′|h, π(h))V π(h′),

Qπ(h, a) = R(h) + γ
∑
h′∈H

P (h′|h, a)V π(h′).

The state transition graph of a history MDP is a tree, and thus the search trees gener-
ated by lookahead search algorithms can be viewed as finite history MDPs. The classical

5

expectimax search algorithm [Russell and Norvig, 2010], for example, solves the history
MDP 〈Hd,A, R, P, γ, s0〉 exactly for a fixed depth d. Because of our focus on tree search
algorithms, we will deal almost exclusively with finite history MDPs in this paper.

2.3.2 Sparse Sampling

Sparse sampling [Kearns et al., 2002] is a systematic approach to tree search. In the SS
algorithm, each action is sampled C times in the root state s0, yielding |A| · C successors,
some of which may be duplicates. Sampling is then carried out recursively in each successor
state, and this is continued until the tree has uniform depth d. The constants C and d can
be chosen independently of the size of the state space to achieve bounded error in the root
state Q estimates, which ensures that the greedy action choice at the root is near-optimal
with high probability. Sparse sampling is essentially an approximate expectimax search in
which the transition distribution at each node is approximated by an empirical distribution
of C samples.

As suggested by Kearns et al. [2002], the practical sample complexity of SS can be
improved by incorporating a pruning mechanism. Forward search sparse sampling (FSSS)
[Walsh et al., 2010] realizes this idea. FSSS constructs the SS tree incrementally by ex-
panding nodes along one state-action trajectory at a time. The trajectories are guided by
upper and lower bounds on the value estimate of the full SS tree, in a manner similar to
Bounded Real-Time Dynamic Programming (BRTDP) [McMahan et al., 2005]. The value
bounds allow FSSS to avoid sampling portions of the tree that cannot affect the choice of
action in the root state, while providing the same worst-case guarantees as SS.

2.3.3 Trajectory Sampling

Trajectory sampling (TS) algorithms [Keller and Helmert, 2013] build a sample tree from
complete trajectories of a sampling policy. The sampling policy typically operates in two
phases. During the tree policy phase, which begins in s0 and continues until the trajectory
reaches a leaf node, the sampling policy is based on statistics of the search tree combined
with a mechanism to balance exploration and exploitation. Once the trajectory reaches a
leaf node, a new successor node is added and the sampling policy switches to the evaluation
phase. In the evaluation phase, an estimate of the new leaf’s value is computed, typically
either by sampling the return of a rollout policy or by evaluating a heuristic function. Search
trees built in this way are not of uniform width and depth like SS trees. Statistics of the
nodes near the root will be based on many more samples than statistics of nodes near the
leaves, and the search tree will be deeper in areas of the state space that are more likely to
be reached under the sampling policy.

Compared to sparse sampling, trajectory sampling imposes weaker requirements on the
generative model used for planning. Whereas SS algorithms require a strong simulator,
capable of generating a sample from P (·|h, a) for any h and a, TS algorithms require only
a weak simulator, which need only be capable of generating a complete episode following
a fixed policy from the root state. This distinction has important implications when using
state abstraction in search (Section 4).

The most well-known TS algorithm is UCT [Kocsis and Szepesvári, 2006]. Keller and
Helmert [2013] formalized the generic trajectory sampling framework that we have described

6

MCTS State Abstraction

here and of which UCT is a member. This basic TS algorithm structure as pioneered by
UCT is so ubiquitous in the literature that some authors (e.g. Browne et al. [2012]) define
Monte Carlo tree search to include only TS algorithms and not SS algorithms. We define
MCTS more broadly to include any algorithm that builds a forward search tree through
random sampling.

3. State Aggregation Abstractions for Tree Search

Our focus in this paper is on improving the anytime performance of MCTS algorithms
through the use of state abstraction. State abstraction, broadly speaking, includes any
way of reducing the amount of information needed to describe the states of an MDP. We
focus on the simplest form of MDP state abstraction, which is state aggregation [Li et al.,
2006; Van Roy, 2006; Hostetler et al., 2014]. State aggregation abstractions define abstract
states as equivalence classes of ground states. In our history MDP setting, the “states” are
histories, and so the abstract states are equivalence classes of ground histories in H. An
equivalence relation on the set of histories H is a binary relation χ ⊆ H×H that is reflexive,
symmetric, and transitive. We say that two histories h and g are equivalent with respect
to χ, denoted h 'χ g, if and only if 〈h, g〉 ∈ χ. The equivalence class of a history h with
respect to χ, denoted [h]χ, is the set [h]χ = {g ∈ H : h 'χ g}. The quotient set of H by
χ, denoted H/χ, is the set of equivalence classes of H with respect to χ. We use uppercase
letters, e.g. H ∈ H/χ, to denote abstract histories, to emphasize that abstract histories are
sets of ground histories.

In order to plan in the abstract state space, we need to define the dynamics of the
abstract MDP in terms of the dynamics of the ground MDP. We do this by introducing a
weight function µ : H/χ × H 7→ [0, 1], where for each H ∈ H/χ, µ(H, ·) is a probability
mass function over the ground states in H. The abstract dynamics Pµ and Rµ are defined
as µ-weighted convex combinations of the ground dynamics,

Pµ(H ′|H, a) =
∑
h∈H

µ(H,h)
∑
h′∈H′

P (h′|h, a)

Rµ(H) =
∑
h∈H

µ(H,h)R(h).
(2)

A state abstraction, then, consists of two parts: an equivalence relation χ and a weight
function µ.

Definition 1. A history aggregation abstraction (hereafter called a state abstraction) is a
tuple 〈χ, µ〉 consisting of an abstraction relation χ and a weighting function µ, where χ
is an equivalence relation on H satisfying1 h 'χ g ⇒ [p(h) 'χ p(g) ∧ a(h) = a(g)] and
µ : H/χ × H 7→ [0, 1] defines, for each equivalence class H ∈ H/χ, a probability mass
function µ(H, ·) supported on H.

A state abstraction applied to a history MDP T = 〈H,A, P,R, γ, s0〉 induces an abstract
MDP T/〈χ, µ〉 = 〈H/χ,A,Pµ,Rµ, γ, s0〉. Given an abstraction α = 〈χ, µ〉, a policy π for

1. The condition that h 'χ g ⇒ [p(h) 'χ p(g) ∧ a(h) = a(g)] ensures that the state transition graph of
T/〈χ, µ〉 remains a tree.

7

the abstract problem T = T/α maps abstract states to actions, π : H/χ 7→ A. The value
of π in T is given by the abstract value function

Vπα(H) = Rµ(H) + γ
∑

H′∈H/χ

Pµ(H ′|H,π(H))Vπα(H ′).

and the Q-function of π in T is given by

Qπα(H, a) = Rµ(H) + γ
∑

H′∈H/χ

Pµ(H ′|H, a)Vπα(H ′).

The optimal abstract value functions are denoted V∗α and Q∗α.
Each abstract policy π induces a ground policy ↓π defined by

↓π(h) = π([h]χ). (3)

Using the induced policy, we can define the ground value function of an abstract policy π
as V ↓π. We say that an abstraction α is sound if every optimal policy π∗ for the abstract
problem T/α induces a ground policy ↓π∗ that achieves the optimal value in the ground
MDP, V ↓π

∗
= V ∗. Note that this need not imply that the abstract value of π is equal to

the optimal ground value. It may be the case that Vπα 6= V ∗ and yet V ↓π = V ∗.

3.1 A Regret Bound for State Abstraction in Tree Search

Naturally, state abstraction introduces a new source of value estimation error. The mag-
nitude of this abstraction error depends on the properties of the two components of the
abstraction: the abstraction relation χ and the weighting function µ.

We consider the abstraction relation χ first. Following Hostetler et al. [2014], we define
a class of state space partitions parameterized by p, q ∈ R≥0.

Definition 2. A partition H/χ is (p, q)-consistent if for all H ∈ H/χ,

∃a∗ ∈ A . ∀h ∈ H : V ∗(h)−Q∗(h, a∗) ≤ p (4)

∀h, g ∈ H :
∣∣V ∗(h)− V ∗(g)

∣∣ ≤ q. (5)

An abstraction relation χ is (p, q)-consistent if and only if H/χ is (p, q)-consistent.

The p condition requires that in each abstract history H ∈ H/χ, there is an action a∗

that is near-optimal in every ground history in h ∈ H. This bounds the loss from following
an abstract policy that is constrained to play the same action in all equivalent ground
histories. The q condition requires that the optimal values of all ground histories h ∈ H are
close to one another. The value of q is related to the error in approximating the dynamics of
the abstract process as a weighted average of the ground process dynamics of the different
ground states in H.

The (p, q)-consistency property is a generalization of the a∗-irrelevance and π∗-irrelevance
properties identified by Li et al. [2006] in their study of sound state aggregation abstrac-
tions. The π∗-irrelevance property is equivalent to (0,∞)-consistency, while a∗-irrelevance
is equivalent to (0, 0)-consistency. The coarsest abstraction satisfying π∗-irrelevance is also

8

MCTS State Abstraction

s0

s1

s2

s3

a/0.5

b/0

a/1

a/2

S

(a)

h0

a1

a2

h1

h3

h2

hc

a0

a0

a0

a0

r = 1

r = 3

r = 2

r = c

0.5

0.5

0.5

0.5

H0

H1

H2

(b)

Figure 1: (a) An example of an MDP for which a (0,∞)-consistent abstraction is unsound
[Li et al., 2006]. The edge labels like “a/0.5” mean action a yields immediate reward 0.5.
(b) A history MDP for which a (0,∞)-consistent abstraction 〈χ, µ〉 is unsound for some
weighting functions µ 6= µ∗. Edge labels denote transition probabilities.

the coarsest sound abstraction. The hierarchy of sound abstractions proposed by Li et al.
[2006] consists of refinements of π∗-irrelevance.

Although abstractions satisfying π∗-irrelevance are sound, learning with these abstrac-
tions can be problematic because it may be that the optimal ground value of a state s is
not equal to the optimal abstract value of its equivalence class, that is V ∗(s) 6= V∗([s]χ).
A simple example due to Li et al. [2006] illustrates the problem (Figure 1a). When s1 and
s2 are aggregated into a single abstract state S, the value of S becomes non-Markovian.
If S was reached via action a, then V∗(S) = 1, while if S was reached via action b, then
V∗(S) = 2. Nevertheless, the estimated abstract value V(S) must be a single number. The
greedy policy with respect to this estimated value function will not be optimal because it
will choose a in s0 due to its larger immediate reward.

History aggregation abstractions (Definition 1) cannot create the structure in Figure 1a
because they will not aggregate histories that result from different action sequences. Nev-
ertheless, history aggregation abstractions are subject to a related problem if the weight
functions are not correct, illustrated in Figure 1b. If the weight function µ is

µ(H1, h1) = 0 µ(H2, h2) = 1

µ(H1, h3) = 1 µ(H2, hc) = 0,

then Q∗α(H0, a1) = 3 and Q∗α(H0, a2) = 2, while the ground values are Q∗(h0, a1) = 2
and Q∗(h0, a2) = c/2 + 1. If on the other hand µ(H1, ·) = µ(H2, ·) = [0.5, 0.5], then
Q∗(H0, ·) = Q∗(h0, ·) and the abstraction is lossless.

The previous example illustrates the role of the weight function µ in determining the
accuracy of an abstraction. Intuitively, the second choice of weight function is superior
because it faithfully preserves the relative probability of the different ground histories that
are aggregated in the abstract history. The following definition formalizes this property.

Definition 3. The optimal weight function for history MDP T , denoted µ∗T (or µ∗ if
T is clear from context), weights ground states by the conditional probability P(h|H) of

9

occupying ground state h given that the process followed the abstract history H:

µ∗T (H,h) =
1h∈HP(h)

P(H)
=

∏`(h)
i=1 P (hi|hi−1, a(hi))∑

g∈H
∏`(g)
i=1 P (gi|gi−1, a(gi))

=

∑
g∈p(H) µ

∗
T (p(H), g)P (h|g, a(h))

Pµ∗T (H|p(H), a(H))
.

The recursive form of the last expression in Definition 3 is especially natural in the tree
search setting. We can view this recursive form as an operator [µ]∗ acting on a weight
function µ to give an exact update of µ,

[µ]∗(H,h) =

∑
g∈p(H) µ(p(H), g)P (h|g, a(h))

Pµ(H|p(H), a(H))
. (6)

Using this notation, µ∗ is simply the weight function satisfying µ = [µ]∗. We can now define
the single-step divergence δT (H) of state H in the abstract problem T = T/〈χ, µ〉,

δT (H) =
1

2

∥∥∥µ(H, ·)− [µ]∗(H, ·)
∥∥∥

1
, (7)

to quantify the error introduced by µ in the single step p(H)→ H. The divergence of T is
the maximum of δT ,

δT = max
H∈H/χ

δT (H), (8)

which bounds the error due to µ across all abstract states.
The simple regret due to acting in ground state h according to the optimal abstract

policy π∗ with respect to abstraction α = 〈χ, µ〉 is given by

Jα(h) = max
a∈A

Q∗(h, a)−Q∗(h, ↓π∗(h)). (9)

We now present our main theoretical result, which shows that for (p, q)-consistent ab-
stractions, this regret can be bounded. The statement of the theorem involves the “dis-
counted” depth of the MDP, given by the sum of the first d powers of the discount factor,

βγ(d) =
d∑
i=1

γd. (10)

We actually prove the following stronger result, which shows that when we estimate the
value of any action using the abstract action-value function Q∗α, the error in that estimate
due to abstraction is bounded.

Theorem 1. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP such that the maximum length of
a history in H is d = maxh∈H `(h) (which may be infinite). Let α = 〈χ, µ〉 be an abstraction

of T where χ is (p, q)-consistent and let δ
def
= δT/α. For any action a ∈ A,∣∣∣Q∗(s0, a)−Q∗α(s0, a)

∣∣∣ ≤ βγ(d)(p+ δq).

Proof. Appendix A.1.

Our desired bound is an immediate consequence of Theorem 1.

10

MCTS State Abstraction

Corollary 1. The simple regret due to acting in the ground problem greedily with respect
to Q∗α is bounded by

Jα(h) ≤ 2βγ(d)(p+ δq). (11)

Proof. Let a∗ = arg maxa∈AQ
∗(h, a) and let â = arg maxa∈AQ∗α(h, a). Acting greedily

with respect to Q∗α results in error a∗ 6= â, which occurs when Q∗α(s0, a
∗) < Q∗α(s0, â). By

Theorem 1, in the worst case we have Q∗α(s0, â) = Q∗(s0, â)+βγ(d)(p+δq) and Q∗α(s0, a
∗) =

Q∗(s0, a
∗)− βγ(d)(p+ δq), for a combined error of 2βγ(d)(p+ δq).

It is apparent that if χ is a (0, 0)-consistent abstraction relation, then for any weight
function µ, J〈χ,µ〉(s0) = 0. This mirrors the result for general MDPs of Li et al. [2006]
that the optimal abstract policy with respect to an a∗-irrelevance abstraction induces an
optimal ground policy. If χ is (0, q)-consistent for q > 0, then we can still achieve zero
error if we have the optimal weight function µ∗, since in that case δq = 0. Thus we see
that π∗-irrelevance abstractions in the tree search setting have more favorable properties
compared to the general MDP setting. Namely, for any π∗-irrelevance abstraction χ there
is a weight function µ∗ such that the abstract value with respect to abstraction α = 〈χ, µ∗〉
is equal to the ground value, that is Q∗α({s0}, ·) = Q∗(s0, ·).

Note that the bound of Theorem 1 is a formal bound, since actually computing p, q, and
δT would require solving the MDP. The purpose of Theorem 1 is to separate the different
sources of abstraction error and provide guidance for designing or computing good abstrac-
tions. For example, we use it to design an abstraction refinement heuristic in Section 6.2.2.

3.2 Abstract MDPs as Partially Observable MDPs

Bai et al. [2015], in their work on abstraction in MCTS, take the view that an abstract
MDP is a partially observable Markov decision process (POMDP), where the abstract states
are observations that give us information about the hidden ground state, and the weight
function µ plays the role of a belief distribution. Our goal in this section is to show how to
translate between the two formalisms.

A POMDP is a tuple 〈S,A,Z, P,R,Ω, γ〉. The components 〈S,A, P,R, γ〉 define an
ordinary discounted MDP. The set Z is the set of observations, and Ω gives the conditional
probability of an observation given a state, Ω(z|s) : Z ×S 7→ [0, 1]. A policy for a POMDP
cannot observe the state. Instead a policy is a mapping from an observation-action sequence
z0a0z1 . . . zk to an action.

Consider a history MDP T = 〈H,A, P,R, s0, γ〉 and an abstraction α = 〈χ, µ〉. The
abstract MDP T/α can be defined as a POMDP as follows. The state space is the set of
ground histories H, and the actions and dynamics are as in T . The observation set is the
set of abstract histories Z = H/χ. Finally the observation function is Ω(H|h) = 1h∈H .

The weight function µ appears via the definition of the belief state in the POMDP. A
POMDP has an equivalent formulation as a (fully observed) MDP over a continuous state
space called the belief space that represents the probability of being in each state given
an observation history. Let B denote the belief set. Its elements b ∈ B are probability
measures on the state set, b : S 7→ [0, 1]. The belief update operation F maps a belief b and

11

an action-observation pair 〈a, z〉 to a new belief F (b, a, z) defined by

F (b, a, z)(s′) =

∑
s∈S b(s)Ω(z|s′)P (s′|s, a)∑

s∈S b(s)
∑

s′′∈S Ω(z|s′′)P (s′′|s, a)
.

Compare this to Equation 6, which when the notation is expanded reads

[µ]∗(H,h) =

∑
g∈p(H) µ(p(H), g)P (h|g, a(h))∑

g∈p(H) µ(p(H), g)
∑

h∈H P (h|g, a(h))
.

Remembering that Ω(z|s) is just the indicator of whether s is “in” z, it is apparent that
the two updates are equivalent, with µ playing the role of the belief state b. Thus in the
POMDP view, [µ]∗ is an exact belief update of the belief µ, and the δ term in Theorem 1
is a measure of inaccuracy in belief updating.

Viewing abstraction in this way exposes a strong connection to POMDP solution meth-
ods. Since the belief space of a POMDP is continuous and high-dimensional, a common
solution approach is to search in a structured space of policies whose complexity can be
controlled (e.g. [Hansen, 1998; Meuleau et al., 1999; Poupart and Boutilier, 2003]). One
can view abstract MCTS algorithms as searching for an evaluation policy within the set
of tree-shaped finite-state controllers that have one state for each history equivalence class
under the abstraction relation χ. Unlike in these works on POMDPs, which seek a struc-
tured policy that is effective over the entire reachable portion of the belief space, in abstract
MCTS the policy is used only to evaluate the current state and thus need only be effective
locally.

4. MCTS Algorithms using Fixed Abstractions

Adapting MCTS algorithms to use state abstraction is straightforward. The main compli-
cation is that we need to sample state transitions in the abstract problem T = T/α, but
we have access only to a simulator of the ground problem T . In this section, we describe
versions of SS and TS algorithms that sample abstract search trees given an abstraction
relation χ and a simulator of the ground problem. Ideally, these algorithms would search in
the abstract problem T/〈χ, µ∗〉 with respect to the optimal weight function µ∗, since then
the δq term of the abstraction error would be 0 (Theorem 1). Our analysis will show that
this can be achieved in trajectory sampling (TS) algorithms, but generally not in sparse
sampling (SS) algorithms.

4.1 Framework and Notation

Algorithm 1 Abstract MCTS Framework

1: procedure AbstractMCTS(s0)
2: while not converged do
3: Choose sampling actions according to statistics of the abstract tree N
4: Draw samples from the ground simulator and add them to the sample tree n
5: Update the structure and statistics of N

12

MCTS State Abstraction

We will view abstract MCTS algorithms as producing two structures. The first is the
sample tree, which is a search tree in the ground state space constructed in a similar fashion
to non-abstract MCTS algorithms. The second is the abstract tree, which is the tree that
results from applying some abstraction 〈χ, µ〉 to the sample tree and that is used to guide
sampling decisions.

The sample tree is a multiset of ground histories, defined by the multiplicity function
n : H 7→ Z≥0 giving the number of times that each history h ∈ H has been sampled. We
will sometimes treat n as an ordinary set, in which case we will write h ∈ n if and only if
n(h) > 0. Conceptually, the sample tree is a bipartite tree consisting of state nodes and
action nodes. State nodes correspond to histories h ∈ H, while action nodes correspond to
a history-action pair. We denote action nodes by juxtaposing a history and an action like
ha.

The tree structure of the sample tree is described by the successor relation kn, which
maps each state node h and action a ∈ A to a set of successors,

kn(h, a) = {h′ ∈ n : p(h′) = h, a(h′) = a}. (12)

State nodes that have no successors are called leaf nodes. The sample count for action
nodes, denoted mn(h, a), is given in terms of kn as

mn(h, a) =
∑

h′∈kn(h,a)

n(h′). (13)

We will normally omit the n subscripts when n is clear from context. Particular MCTS
algorithms will also record other statistics of the tree, which we will denote similarly as
functions taking histories as arguments.

The second product of abstract MCTS — the abstract tree — is the quotient multiset
N = n/χ obtained by partitioning n according to an abstraction relation χ. The multiplicity
function of the quotient multiset is denoted N : H/χ 7→ Z≥0 and is defined by

N(H) =
∑
h∈H

n(h) ∀H ∈ H/χ. (14)

As before, we write H ∈ N if and only if N(H) > 0. The successor relation KN and the
action sample count MN (H, a) for the abstract tree are defined analogously to those for the
sample tree,

KN (H, a) = {H ′ ∈ N : p(H ′) = H, a(H ′) = a}, (15)

MN (H, a) =
∑

H′∈KN (H,a)

N(H ′), (16)

and as before we will usually omit the N subscripts.

We can now outline a generic abstract MCTS algorithm (Algorithm 1). Sampling deci-
sions are made according to the abstract tree (Line 3), but the ground samples are retained
in the sample tree (Line 4). In the following sections we instantiate this algorithm skeleton
to obtain abstract versions of TS and SS algorithms.

13

Algorithm 2 Abstract Sparse Sampling

1: procedure AbstractSS(s0, C, d, χ)
2: Expand({s0}, C, d, χ)
3: return arg maxa∈AQ({s0}, a)

4: procedure Expand(H, C, d, χ)
5: if H is terminal then
6: Q(H, a)← 0 for all a ∈ A
7: return
8: for all a ∈ A do
9: if d = 0 then

10: Q(H, a)← Rµ̄(H)
11: else
12: Sample(H, a, C)
13: for H ′ ∈ K(H, a) do
14: Expand(H ′, C, d− 1, χ)

15: Q(H, a)← Rµ̄(H) + γ
∑

H′∈K(H,a)
N(H′)
C maxa′∈AQ(H ′, a′)

16: procedure Sample(H, a, C)
17: for C times do
18: Let h ∼ µ̄(H, ·), where µ̄(H,h) = 1h∈H

n(h)
N(H)

19: Let h′ ∼ P (·|h, a)
20: n(h′)← n(h′) + 1

4.2 Representing Abstractions in Tree Search

In the tree search setting, it is natural to represent the monolithic abstraction relation χ,
which is defined on histories, as a collection of abstraction relations χ(H, a) on the ground
state space S. For each abstract action node Ha in the abstract tree, its abstract successors
are the abstract histories HaS, where each S ∈ S/χ(H, a). The equivalence class of a
ground history h = s0a0s1 . . . ad−1sd is the set

[h]χ = S0a0S1 . . . ad−1Sd, where Si = [si]χ(Si−1,ai−1).

Any history aggregation abstraction can be represented in this fashion. Naturally, some or
all of these component abstraction relations could be the same. Decomposing the abstrac-
tion in this manner facilitates making “local” refinements to the abstraction (Section 5).

4.3 Abstract Sparse Sampling

Sparse sampling [Kearns et al., 2002] is a systematic approach to MCTS. It is systematic in
the sense that the amount of sampling that takes place in different regions of the state space
is not related to the probability of reaching those regions from the start state under any
particular policy. To accomplish this type of sampling, it is necessary to sample transitions
〈h, a, h′, r〉 from the single-step dynamics P and R. Sparse sampling draws a constant
number C of transition samples recursively for every action node ha in the tree with `(h) <
d. The algorithm achieves small error with high probability with a sample complexity that

14

MCTS State Abstraction

does not depend on the size of the state space |S| (Theorem 1 of Kearns et al. [2002]). The
AbstractSS algorithm (Algorithm 2) employs the same systematic sampling strategy, but
it operates in the abstract state space.

To implement AbstractSS, we need to sample transitions from Pµ for some µ. We
would like to sample from Pµ∗ , but in general we will have to settle for sampling from Pµ̂,
where µ̂ is our estimate of µ∗. The obvious choice of µ̂(H, ·) is the empirical probability of
the ground histories h ∈ H,

µ̄(H,h) = 1h∈H
n(h)

N(H)
. (17)

We will specify AbstractSS in terms of µ̄, but note that better estimators may be available
for particular problem domains.

Because AbstractSS must estimate µ∗, the algorithm might introduce abstraction
error via the δ term in Theorem 1. We analyze AbstractSS by separating the error due
to finite sampling from the error due to abstraction. In effect, AbstractSS is performing
ordinary sparse sampling in an abstract MDP for which we can characterize the abstraction
error. We can thus apply the same finite sample analysis as Kearns et al. [2002] employed
for SS in order to characterize the sampling error in AbstractSS.

There is a small technical difficulty in this analysis, which is that the abstract value
function V∗〈χ,µ̄〉 is not well-defined because µ̄ is only defined over a subset of the abstract

history set H/χ. We work around this by introducing a “completed” weight function µ̄+

that is defined over the entire state space. Let dom(µ̄) ⊆ H/χ be the subset of the abstract
history set on which µ̄ is defined. Then µ̄+ is given by

µ̄+(H,h) =

{
µ̄(H,h) if H ∈ dom(µ̄),
µ∗(H,h) otherwise.

(18)

Clearly for any state node H ∈ dom(µ̄), we have Pµ̄(·|H, a) = Pµ̄+(·|H, a) for any a ∈ A.
We will denote the completed abstraction as α+ = 〈χ, µ̄+〉. Note that while µ̄+ is defined in
terms of the exact weight function µ∗, we use this fact only for our analysis; AbstractSS
does not actually compute µ∗.

The analysis of Kearns et al. [2002] also requires an upper bound on the value achievable
in the problem. Define the quantity V d

max to be an upper bound on the value function V ∗(h)
for all histories h ∈ H of length `(h) = d. Since our rewards are bounded in [0, 1], one
possible definition of V d

max is

V d
max =

{ ∑∞
t=0 γ

t if γ < 1,
D − d if γ = 1,

(19)

where D is the maximum length of a trajectory in a finite-horizon problem.
We now have the tools we need to derive the following formal guarantee on the perfor-

mance of AbstractSS.

Proposition 2. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP and let χ be a (p, q)-consistent
history equivalence relation on H. Then the procedure AbstractSS(s0, C, d, χ), with

probability at least 1− (|A|C)d · 2e−2λ2C/(V dmax)2
, returns an action choice a∗ such that

V ∗(s0)−Q∗(s0, a
∗) ≤ 2βγ(d)(λ+ p+ δq),

15

where δ is the divergence (Eq. 7) of the completed empirical weight function µ̄+ derived from
the empirical weight function µ̄ computed by AbstractSS.

Proof. Appendix A.2.

This result combines Theorem 1 with the sample complexity result for sparse sampling
proven by Kearns et al. [2002]. It shows that AbstractSS achieves the same error bounds
as running ordinary SS in the abstract problem T/〈χ, µ̄〉, despite µ̄ being computed “on
the fly” by AbstractSS rather than being fixed beforehand.

4.4 Abstract Forward Search Sparse Sampling

Forward Search Sparse Sampling (FSSS) [Walsh et al., 2010] is an enhancement of SS
that incorporates pruning based on upper and lower bounds on the values of subtrees.
It provides the same performance guarantees as SS and often performs less computation.
Abstract FSSS (AFSSS; Algorithm 3) is a straightforward extension of FSSS. Its structure
is similar to AbstractSS. In addition to the data structures required by AbstractSS,
each abstract state nodeH in the AFSSS tree has associated upper and a lower value bounds
U(H) and L(H), and each action node Ha has similar bounds U(H, a) and L(H, a). For
state nodes, we maintain the Boolean value expanded(H), which is used to identify non-
terminal state nodes for which we have not sampled any successors.

The addition of upper and lower value bounds allows us to define an early stopping
condition for the sampling procedure. We say that the search has converged if

L(H0, a
∗) ≥ max

a6=a∗
U(H0, a), (20)

where a∗ = arg maxa∈A L(H0, a). For this early stopping criterion to be sound, the value
bounds L and U must bracket the value estimate that AbstractSS would compute. We
now define a condition on L and U that ensures that this is the case. We call this condition
admissibility, but note that our definition is somewhat different from the typical definition
of admissibility employed in algorithms like A∗ search.

Definition 4. Let α = 〈χ, µ〉 be a state abstraction of a history MDP T inducing an
abstract MDP T/α = 〈H/χ,A,Pµ,Rµ, s0, γ〉. Let ρπ(H) be a random variable giving the
return (sum-of-rewards) from following an abstract policy π ∈ Π(T/α) in T/α starting from
H, and let ρπ(H, a) be a random variable giving the return from doing a and then following
π. A pair of state value bounds L,U : H/χ 7→ R on the state space H/χ is admissible with
respect to α if for any policy π ∈ Π(T/α), with probability 1,

L(H) ≤ ρπ(H) ≤ U(H) for all H ∈ H/χ.

A pair of state-action value bounds L,U : H/χ × A 7→ R is admissible with respect to α if
for any policy π ∈ Π(T/α), with probability 1,

L(H, a) ≤ ρπ(H, a) ≤ U(H, a) for all 〈H, a〉 ∈ H/χ×A.

If the bounds U and L are admissible, then further sampling after convergence cannot
change the estimate of the optimal action in the root state H0. Any un-expanded portions

16

MCTS State Abstraction

of the search tree at the time of convergence are effectively pruned away without being
sampled. Due to this pruning, AFSSS can give the same worst-case performance guarantees
as AbstractSS while often using fewer samples in practice.

The next definition formalizes the structural features of an abstract FSSS tree. Fig-
ures 2a and 2c illustrate the structure of two abstract FSSS trees. Note that we continue
to assume the use of the empirical weight function µ̄.

Definition 5. An abstract FSSS tree with respect to χ, or a χ-FSSS tree, is a tuple F =
〈N,L,U,H0, χ〉, where N is an abstract tree, L and U are lower and upper value bound
functions, H0 ∈ N is the root state, and χ is an abstraction relation, such that all of the
following conditions are satisfied:

1. For each abstract history H ∈ N , ∀h, g ∈ H, h 'χ g;

2. For each abstract history H ∈ N , if expanded(H) then M(H, a) ≥ C for all a ∈ A;

3. L and U are admissible with respect to α = 〈χ, µ̄+〉 (Definition 4);

4. F satisfies the convergence criterion (20).

If F satisfies at least conditions 1, 2, and 3, then F is a partial χ-FSSS tree.

The AFSSS algorithm (Algorithm 3) constructs a χ-FSSS(C, d) tree for a fixed ab-
straction relation χ. Like FSSS, AFSSS proceeds in a series of top-down trials that each
traverse a path from the root node to a leaf state node. When extending a path, the
algorithm chooses action nodes optimistically (Line 13), and chooses state nodes with the
largest gap between U and L (Line 14). If the path reaches an unvisited state node (Line 12),
that node is expanded by initializing and sampling its action node successors. The backup
operation (Line 30) combines the average immediate reward over ground states with the
discounted future return bounds over abstract states weighted by their empirical frequency.
The additional parameters to AFSSS are the sparse sampling width and depth C and d,
admissible values bounds Vmin and Vmax, and a default abstraction χ0 ⊆ S ×S that is used
to initialize χ(H, a) when expanding a new state node H. Note that χ0 is a relation on the
state set S, not H.

The AFSSS implementation in Algorithm 3 is generalized to accept a partial χ-FSSS(C,
d) tree as input and transform it into a converged χ-FSSS(C, d) tree. Starting from a
partial tree allows us to use AFSSS without major changes as a building block of the
PARSS algorithm that we will introduce next (Section 5.2). To build an abstract FSSS
tree from scratch, one calls AFSSS with an empty tree as input. Given an initial state s0

and admissible value bounds Vmin and Vmax, the empty χ-FSSS tree is defined by

F0(s0, Vmin, Vmax) = 〈N0, L, U,H0, χ〉
where H0 = {s0}, N0(H) = 1H=H0 ,

L(H0) = Vmin, U(H0) = Vmax, χ = ∅.
(21)

Thus to build a χ-FSSS tree rooted at s0 according to abstraction relation χ, we call
AFSSS(F0(s0, Vmin, Vmax), C, d, Vmin, Vmax, χ).

17

Proposition 3. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP, and let χ be a (p, q)-
consistent history equivalence relation. The procedure AFSSS(s0, C, d, χ), with probability

at least 1− (|A|C)d2e−2λ2C/(V dmax)2
, returns an action choice a∗ such that

V ∗(s0)−Q∗(s0, a
∗) ≤ 2βγ(d)(λ+ p+ δq),

where δ is the divergence (Eq. 7) of the completed empirical weight function µ̄+ derived from
the empirical weight function µ̄ computed by AbstractSS.

Proof. The value bounds L(H) and U(H) for all leaf states H are admissible because they
are initialized to Vmin and Vmax. The Backup operations (Algorithm 3, Lines 30 and 33)
preserve admissibility. Thus the root state action-value bounds L(H0, a) and U(H0, a) are
admissible with respect to α = 〈χ, µ̄+〉 for all a ∈ A. Since F satisfies the convergence
criterion (Eq. 20), the action a∗ = arg maxa∈A L(H0, a) is such that L(H0, a

∗) ≥ U(H0, a)
for all a 6= a∗. By admissibility, we conclude Q(H0, a

∗) ≥ Q(H0, a) for all a 6= a∗, where Q
is the abstract Q-function of an arbitrary AbstractSS(C, d, χ) search tree that contains
the AFSSS tree as a subset. Thus AFSSS provides the same guarantees as AbstractSS
(Proposition 2).

4.5 Abstract Trajectory Sampling

Abstract TS algorithms have notably different properties from abstract SS algorithms. The
defining characteristic of TS algorithms is that they can be implemented in terms of a weak
simulator, which is a generative model from which complete state-action histories can be
sampled under a fixed sampling policy. We refer to the process of generating a single history
sample as a sampling episode. Because the sampled histories must be of finite length, a TS
algorithm also requires a stopping condition. We model this by augmenting the action space
with the special action ω, which causes the sampling episode to be terminated but which is
not appended to the sampled history. Given a history h = s0a0s0 . . . ad−1sd, the probability
of sampling h under sampling policy π starting from h0 is denoted P π(h|h0) and given by

P π(h|h0) = π(h, ω)
d−1∏
t=0

π(ht, at)P (ht+1|ht, at). (22)

To implement an abstract TS algorithm, we need to sample abstract histories H =
S0a0S1 . . . ad−1Sd from the probability distribution over trajectories in T/α when executing
a fixed abstract policy ξ, which again uses the modified action space A ∪ {ω}. We denote

this probability by Pξα(H|h0), where

Pξα(H|h0) = ξ(H,ω)
d−1∏
t=0

ξ(Ht, at)Pµ(Ht+1|Ht, at). (23)

We need to sample from Pξα, but we have access only to P π. The obvious approach is
to sample a ground history from P π and then apply the abstraction relation χ to it. At the
same time, we want the sampling process to be guided by the statistics of the abstract tree
N . Thus π should be the grounded version of an abstract policy ξ, that is π =↓ξ (Eq. 3),

18

MCTS State Abstraction

Algorithm 3 Abstract Forward Search Sparse Sampling

Require: F = 〈N,L,U,H0, χ〉: a partial χ-FSSS tree
Require: χ0: a default abstraction for new state nodes
Ensure: F is a converged χ-FSSS tree
1: procedure AFSSS(F = 〈N,L,U,H0, χ〉, C, d, Vmin, Vmax, χ0)
2: global N,L,U,H0, χ, C, Vmin, Vmax, χ0

3: while not Converged(H) do
4: Visit(H0, d)

5: function Converged(H)
6: Let a∗ = arg maxa∈A L(H, a)
7: return L(H, a∗) ≥ maxa6=a∗ U(H, a)

8: procedure Visit(H, d)
9: if H is terminal or d = 0 then

10: L(H)← R(H), U(H)← R(H)
11: else
12: if not expanded(H) then Expand(H, χ0)

13: a∗ ← arg maxa U(H, a)
14: H∗ ← arg maxH′∈K(H,a∗)[U(H ′)− L(H ′)]
15: Visit(H∗, d− 1)
16: Backup(H, a∗)
17: Backup(H)

18: procedure Expand(H)
19: for all a ∈ A do
20: χ(H, a)← χ0

21: 〈L(H, a), U(H, a)〉 ← 〈Vmin, Vmax〉
22: Sample(H, a)
23: 〈L(H ′), U(H ′)〉 ← 〈Vmin, Vmax〉 ∀H ′ ∈ K(H, a)

24: expanded(H)← true

25: procedure Sample(H, a, C)
26: for C times do
27: Let h ∼ µ̄(H, ·)
28: Let h′ ∼ P (·|h, a)
29: n(h′)← n(h′) + 1

30: procedure Backup(H, a)

31: L(H, a)← R(H) + γ
∑

H′∈K(H,a)
N(H′)
M(H,a)L(H ′)

32: U(H, a)← R(H) + γ
∑

H′∈K(H,a)
N(H′)
M(H,a)U(H ′)

33: procedure Backup(H)
34: L(H)← maxa L(H, a)
35: U(H)← maxa U(H, a)

19

where ξ = ξ(N) is parameterized by N . The following result shows that this approach in

fact yields a sample from Pξ〈χ,µ∗〉, which is the abstract trajectory distribution with respect

to χ and the optimal weight function µ∗.

Proposition 4. Consider a history MDP T augmented with the special action ω and an
abstraction α = 〈χ, µ∗〉 of T composed of equivalence relation χ and the corresponding

optimal weight function µ∗. Let H ′ be a random variable H ′ ∼ Pξα(·|h0) for a fixed abstract
policy ξ ∈ Π(T/α), and let h′ be a random variable such that h′ ∼ P ↓ξ(·|h0). Then the
random variable [h′]χ is equal in distribution to H ′.

Proof. Appendix A.3.

Proposition 4 shows that we can sample from Pξ〈χ,µ∗〉(·|h0) by sampling a history from

the ground dynamics P ↓ξ(·|h0) and then abstracting the ground history with χ, without
explicitly computing µ∗. We give a generic abstract TS algorithm based on this approach
in Appendix B and specialize it to create abstract UCT.

4.6 Handling Action Constraints

If a problem has different legal action sets in different states, then the abstraction relation χ
might aggregate ground states with different legal action sets into the same abstract state,
so that there exist states h and g such that h 'χ g but A(h) 6= A(g). It is then not obvious
what the set of legal actions should be in the abstract state H = [h]χ = [g]χ. We have
identified three ways of addressing this issue.

1. Require χ to be such that h 'χ g ⇒ A(h) = A(g).

2. Set A(H) =
⋂
h∈H A(h) for each H ∈ H/χ.

3. Model “illegal” actions as having no effect and possibly giving a penalty.

Option 1 is reasonable if it is rare that two states with different action sets are reached by
the same sequence of actions. If different action sets are common, then it becomes difficult
to find nontrivial abstractions that satisfy condition 1, and the benefits of abstraction are
lost. The viability of option 2 depends on whether the intersection of the ground action
sets usually contains the actions necessary for good performance. Option 2 also makes
implementing abstraction refinement (Section 5) more difficult, since refining the abstraction
can expand the legal action sets for the aggregate states. Note that option 2 has a similar
effect to giving a penalty of −∞ for executing an illegal action.

For our experiments (Section 8), we selected domains in which option 3 could be used,
to maximize opportunities for state aggregation. When the problem involves controlling
an “embodied” agent, such as in typical navigation tasks, it is natural for all actions to be
possible in all states. In some other problems, one can model an illegal action as having
the same effect as the “most similar” legal action. For example, in Tetris (Section 8.2.9)
some types of blocks have more legal positions than others, so we map illegal positions to
the nearest legal position. This makes the planning problem slightly harder, since there are
now redundant actions that waste samples.

20

MCTS State Abstraction

The problem of action constraints is a fundamental obstacle to state abstraction. The
framework of approximate MDP homomorphisms [Ravindran and Barto, 2004] addresses
the problem by extending the notion of state abstraction to abstractions of 〈s, a〉 pairs.
This allows action symmetries to be modeled, which is one way of enlarging the intersection
of action sets (option 2 above). Anand et al. [2015] developed abstract UCT algorithms
based on homomorphisms of history MDPs. The problem of identifying useful subsets of
the action set in MCTS was studied by Pinto and Fern [2014], and similar methods could
be used to identify a common action set or determine that no useful one exists.

5. Abstraction Refinement Algorithms

It is difficult to assess the quality of a state abstraction for tree search a priori because
of the complex interaction of abstraction size, abstraction accuracy, sample budget, and
search depth. Planning problems often have “critical horizons”, meaning that important
consequences of actions only manifest sufficiently far in the future. For example, a car
must begin decelerating well before entering a turn. If an online planning algorithm cannot
search to the critical horizon, it will not recognize the possibility of a crash until it is too
late to prevent it. Although abstractions may introduce error, the corresponding increase
in search depth may give an overall performance gain by allowing the search to reach a
critical horizon. Further, state abstraction reduces the space of policies, so that even if the
optimal policy is not representable in the abstract state space, many poor policies may be
excluded along with it, resulting in a net benefit.

We address the problem of abstraction specification by designing a sparse sampling
algorithm that refines its abstraction during search, so that the abstraction becomes finer
as the number of samples increases. This allows the representation to adapt automatically
to the search budget.

5.1 Abstraction Refinement

To refine an abstraction relation χ means, intuitively, to define a new abstraction relation
ψ that preserves more detail about the ground state space than χ. Abstraction refinement
gives rise to an ordering of abstraction relations.

Definition 6. Abstraction ψ is finer than χ, denoted ψ � χ, if h 'ψ g ⇒ h 'χ g. If in
addition ψ 6= χ, then ψ is strictly finer than χ, denoted ψ ≺ χ.

State equivalence abstractions form a complete lattice under this ordering. The finest
abstraction is the bottom or ground abstraction ⊥, which maps all states to singleton sets,
[h]⊥ = {h} ∀h. The coarsest abstraction is the top abstraction >, which maps all ground
histories of the same length and containing the same action sequence to the same abstract
history, [h]> = {g ∈ H`(h) : ai(h) = ai(g), i = 1, . . . , `(h)}. Searching in the abstract
problem T/> amounts to searching for the best open-loop policy in T , while searching in
T/⊥ is equivalent to searching in the ground space.

Given a refinement operator F such that F (χ) ≺ χ, the lattice structure implies that
repeated application of F eventually yields the bottom abstraction, that is F ∗(χ) =⊥.
The search algorithm we describe next relies on this property to enable it to exploit state

21

(a) (b) (c)

Figure 2: (a) An abstract FSSS tree of width C = 2 and depth d = 2. The small circles and
squares represent ground state and action nodes, respectively. Ground nodes are aggregated
into abstract nodes, but the structure of the ground tree is retained. The arrows show how
value estimates propagate in the abstract tree. Note that part of the tree was not expanded.
(b) After refining one state abstraction, the ground samples are re-partitioned to respect
the new abstraction. The abstract FSSS invariant (Definition 5) no longer holds. (c)
After up-sampling and value backups, the tree again satisfies the abstract FSSS invariant.
The pruned subtree had to be expanded because abstraction refinement changed the value
estimates.

abstractions during search while still providing the performance guarantees of search in the
ground state space.

5.2 Progressive Abstraction Refinement for Sparse Sampling

Algorithm 4 A generic abstraction refinement procedure

1: procedure PAR(F = 〈N,L,U,H0, χ〉)
2: Let H = Select(N)
3: if H 6= ∅ then
4: χ(p(H), a(H))← Refine(χ(p(H), a(H)))
5: Split(p(H), a(H), χ)
6: UpdateTree(p(H), a(H))

The Progressive Abstraction Refinement for Sparse Sampling (PARSS) algorithm (Al-
gorithm 6), originally proposed by Hostetler et al. [2015], is an adaptation of AFSSS that
refines its abstraction during search. PARSS begins by building a complete >-FSSS tree.
PARSS then iteratively refines the abstraction and revises the search tree to respect the
new abstraction until there are no more useful refinements to perform. We present an im-
proved version of PARSS that incorporates lessons learned from our experiences with the
original PARSS algorithm.

PARSS combines a slightly modified AFSSS algorithm (Algorithm 3) with the generic
refinement procedure PAR described in Algorithm 4. The PAR procedure consists of four

22

MCTS State Abstraction

steps. The Select function either returns a state node H whose associated abstraction
relation χ(p(H), a(H)) should be refined, or indicates that no refinement is to be done. The
Refine procedure performs the refinement of the selected abstraction relation. After re-
finement, the subtree below the refined state node is Split recursively according to the new
abstraction. Finally, UpdateTree revises the part of the tree affected by the refinement.

Algorithm 6 includes implementations of Split and UpdateTree. The Split proce-
dure traverses the subtree affected by an abstraction refinement and alters its structure to
respect the new abstraction. UpdateTree proceeds in two steps. First, the UpSample
procedure adds additional samples to the affected subtree so that each action node has been
sampled at least C times and recomputes the value bounds in the subtree with Backup.
Then, the value bounds of the affected subtree are propagated along the path to the root
of the search tree using Backup. The remaining two operations, Select and Refine, can
be realized in many ways, and we describe several possibilities in Section 6.

After each PAR operation, PARSS calls AFSSS on the refined tree. This is necessary
because refinement may have changed the value bounds of the root node such that the tree
no longer satisfies the convergence criterion. After AFSSS returns, the resulting tree is an
abstract FSSS tree with respect to the newly refined abstraction. PARSS uses a modified
version of AFSSS in which the Sample procedure is replaced by the SampleModified
procedure defined in Algorithm 5. In the modified version, when sampling an abstract
action node Ha, rather than sampling ground states from µ̄(H, ·) as in AFSSS, we instead
repeatedly sample one successor from P (·|h, a) for every h ∈ H until we have at least C
ground successor samples. We do this to ensure that m(h, a) ≤ C at all times for all
ground action nodes ha in the sample tree, which guarantees that PARSS never draws
more samples than ⊥-SS (Section 5.3).

Algorithm 5 Modified Sample procedure for PARSS

1: procedure SampleModified(H, a)
2: for all h ∈ H do
3: while m(h, a) < d C

N(H)e do

4: Let h′ ∼ P (·|h, a)
5: n(h′)← n(h′) + 1

5.3 Analysis of PARSS

The PARSS algorithm can be viewed as a different way of orchestrating the sampling
of a sparse tree. In this section, we establish that PARSS provides the same bounded
suboptimality guarantees with the same sample complexity as ordinary sparse sampling,
provided that the Select and Refine operations of PARSS satisfy some simple conditions
that ensure that the abstraction refinement procedure PAR continues to make progress.
Namely, Select must be complete, while Refine must be strict. To define these terms, we
first need some vocabulary for the different possible dispositions of state nodes.

Definition 7 (Expanded state node). A state node H is expanded if expanded(H) is true.

Definition 8 (Pure state node). A state node H is pure if H is expanded and for all
h, g ∈ H, h = g.

23

Algorithm 6 Progressive Abstraction Refinement for SS

1: procedure PARSS(h0, C, d)
2: Let F = F0(s0, Vmin, Vmax) (Eq. 21)
3: AFSSS(F , C, d, >) . Using SampleModified
4: while time remains and some χ(H, a) �⊥ do
5: PAR(F)
6: AFSSS(F , C, d, >) . Using SampleModified

7: procedure Split(H, a, χ)
8: if H is a leaf then return
9: for all H ′ ∈ K(H, a) do

10: Let G′ = H ′/χ(H, a) . Refined partition
11: for all 〈G′, a′〉 ∈ G′ ×A do
12: χ(G′, a′)← χ(H ′, a′) . Copy old relation
13: Split(G′, a′, χ)

14: procedure UpdateTree(H, a)
15: for all H ′ ∈ K(H, a) do
16: UpSample(H ′)

17: for t from 0 to `(H) do . Backup path to root
18: for all a ∈ A do Backup(H, a)

19: Backup(H)
20: Let H = p(H)

21: procedure UpSample(H)
22: if H is a leaf then
23: L(H)← Rµ̄(H), U(H)← Rµ̄(H)
24: else if expanded(H) then
25: for all a ∈ A do
26: SampleModified(H, a)
27: for all H ′ ∈ K(H, a) do UpSample(H ′)

28: Backup(H, a)

29: Backup(H)

If a state node H is pure, then nothing is accomplished by further refining H. Note that
this need not imply that χ(p(H), a(H)) =⊥, since it may be that not all ground histories
in the equivalence class H have been encountered during sampling.

We can now state the necessary conditions for the Select and Refine operations.

Definition 9. A Select implementation is complete if it returns a state node H, whenever
such an H exists, such that H is expanded and H is not pure.

Definition 10. A Refine implementation is strict if Refine(χ) ≺ χ.

Definition 9 ensures that Select eventually selects every state node H such that refin-
ing H could possibly change the optimal root action. We can exclude un-expanded state
nodes in Definition 9 because if H is un-expanded then L(H) = Vmin and U(H) = Vmax

24

MCTS State Abstraction

(Algorithm 3, Line 23), so refining H cannot increase U(H) or decrease L(H) and thus
cannot change the optimal root action. Definition 10 simply requires that Refine actually
refines the abstraction, which is always possible when H is not pure.

Our analysis of PARSS will proceed as follows. We begin by observing that PARSS
produces a sequence of abstraction relations (χ0, χ1, . . .) with χt+1 � χt and a sequence of
abstract search trees (N0,N1, . . .) with respect to each χt. Proposition 5 establishes that Nt
is an abstract FSSS tree with respect to χt for each t. Next, Proposition 6 shows that there
exists a finite τ such that Nτ is a ⊥-FSSS tree. Lemma 7 shows that ⊥-SS achieves the same
performance guarantees as ordinary SS. Finally, we combine these results in Proposition 8
to conclude that PARSS achieves the same performance guarantees as ordinary SS.

Proposition 5. Consider a PARSS implementation where the Select and Refine op-
erations satisfy the conditions of Definitions 9 and 10. If the current search tree T is a
χ-FSSS tree, then after one iteration of the loop in Algorithm 6, Line 4, the resulting tree
T ′ is a ψ-FSSS tree for some ψ such that ψ ≺ χ.

Proof. By assumption, Refine(H) produces a new abstraction ψ such that ψ(p(H), a(H)) ≺
χ(p(H), a(H)), and therefore ψ ≺ χ. The Split operation partitions the subtree rooted
at H according to ψ, establishing condition (5.1). The UpSample loop in UpdateTree
(Line 15) adds samples and performs backups in the subtree of H to establish (5.2) and
(5.3) for the subtree. Then values are backed up from H to the root node (Line 17), which
establishes (5.3) for the rest of the tree. Finally, the call to AFSSS (Line 6) establishes
convergence (5.4).

Now that we have established that each iteration of refinement produces an abstract
FSSS tree with respect to a strictly refined abstraction, we can exploit the lattice structure
of abstraction relations to argue that this iterative refinement will eventually produce a
⊥-FSSS tree.

Proposition 6. If PARSS does not exhaust its time budget, it terminates after drawing at
most (|A|C)d samples from the transition function P , and the resulting abstract tree T is
an abstract FSSS tree with respect to ⊥.

Proof. By Proposition 5, each iteration of the loop in Algorithm 6, Line 4 produces a strictly
refined AFSSS tree. Due to the lattice structure of aggregation abstractions (Section 5.1),
the abstraction relations χ(H, a) will be equal to ⊥ for all H, a after a finite number of
iterations. The tree at this point is an abstract FSSS tree with respect to ⊥.

The worst-case sample complexity occurs if all abstract nodes H in the fully-refined tree
are singletons and no pruning takes place. In this case, each abstract state node is a singleton
set H = {h}, and its successors K(H, a) are the ground successors in k(h, a). Note that
the SampleModified procedure (Algorithm 5) samples sucessors for every ground state
h until |k(h, a)| = dC/|H|e. Since dC/|H|e achieves its maximum of C when |H| = 1,
the tree in which every abstract state node is a singleton represents the worst-case sample
complexity, and its size is (|A|C)d.

The next lemma formalizes the intuitive result that aggregating ⊥-equivalent states in
the SS algorithm does not affect its performance guarantees, that is that a ⊥-SS(C, d)

25

tree provides the same guarantees as an ordinary SS(C, d) tree. This result was stated in
Kearns et al. [2002], and we prove it here for completeness.

Lemma 7. Abstract sparse sampling with the bottom abstraction ⊥ achieves the same sam-
ple complexity and bounded suboptimality guarantees as ordinary sparse sampling.

Proof. The ⊥-SS tree estimates the same value function as ordinary SS. The analysis of
the probability of error for SS proceeds by bounding the probability of error in a single
tree node and then applying the union bound to derive the probability that no tree node
contains an error. The ⊥-SS tree never contains more nodes than the ordinary SS tree,
thus the overall probability of error is no larger for ⊥-SS.

We can now combine Proposition 6 and Lemma 7 to establish our desired result.

Proposition 8. PARSS achieves the same bounded suboptimality guarantees with the same
sample complexity as ordinary sparse sampling.

Proof. Proposition 6 establishes that PARSS yields a ⊥-FSSS tree T with the same worst-
case sample complexity as SS (ie. O((|A|C)d)). T is different from a ground FSSS tree in
that states that are equal in the ground representation are aggregated in T . Because the
FSSS pruning mechanism is sound when L and U are admissible, T achieves the same error
bounds as an SS tree in which identical states are aggregated. By Lemma 7, such a ⊥-SS
tree achieves the same guarantees as ordinary sparse sampling. The conclusion follows.

From this analysis, we conclude that PARSS can be expected to perform as well as
SS and FSSS in terms of worst case sample complexity and error bounds if both searches
are run to completion. From a practical standpoint, the rate of performance improvement
during search is also important. This is a difficult issue to address theoretically because of
the complicated dynamics of tree search. Instead, we show empirically (Sections 8 and 9)
that PARSS has an advantage compared to FSSS and AFSSS in this regard.

5.4 Optimizing Memory Usage

A drawback of PARSS is that for any abstract state node H that might later be refined,
the ground state samples s(h) for h ∈ H must be retained. This is because after refinement,
more successor samples might need to be drawn from Pµ̄(·|H, a), which involves sampling a
ground history h ∈ H from µ̄(H, ·) and then simulating action a in s(h). The memory cost
of retaining these ground state samples may be significant if there are many state variables,
so we would like to free the memory associated with samples that are no longer needed. We
will show that the ground state samples associated with an abstract state node H can be
discarded if H satisfies the following criterion.

Definition 11 (Closed state node). A state node H is closed if H is pure and all state
node ancestors of H are pure.

If we know that a node H is closed, we can free the memory used to store the ground
states h ∈ H, due to the following fact.

Proposition 9. Sample is never called on a closed state node.

26

MCTS State Abstraction

Proof. The Sample procedure (Algorithm 3 Line 25) is called only when either expanding
an un-expanded state node (Algorithm 3 Line 18) or when up-sampling a newly refined
subtree (Algorithm 6 Line 21). In the first case, a closed node will not be sampled because
it is pure and thus by definition already expanded. In the second case, UpSample will
not be called on a closed node or any of its ancestors because Select never selects a pure
node.

Since Sample is never called on a closed state node H, no further successor samples
will be drawn from Pµ̄(·|H, a). Thus memory used to store the ground states s(h) for each
h ∈ H can be freed. The algorithm need only retain the value estimates and upper and lower
bounds associated with H. We found this optimization to be important in practice. Note
that when doing sparse sampling with a fixed abstraction (including ⊥), we can discard the
ground state samples as soon as the abstract state that contains them is expanded. This
is a disadvantage of PARSS compared to AFSSS with a fixed abstraction, since AFSSS
with a fixed abstraction does not need to store the ground state samples for non-leaf state
nodes, while PARSS might need to retain every ground state sample drawn so far. Thus
PARSS has a larger memory footprint than AFSSS.

5.5 Abstraction Refinement in Trajectory Sampling

It is easy to imagine a “Progressive Abstraction Refinement for Trajectory Sampling” al-
gorithm designed along similar lines as PARSS. Besides the advantages of TS algorithms
compared to SS algorithms when abstractions are used (Section 4), TS algorithms are more
popular in applications [Browne et al., 2012]. We have not thoroughly investigated such a
“PARTS” algorithm, but our preliminary work raised some concerns that prompted us to
pursue the sparse sampling-based alternative.

One concern is that whereas an SS tree for fixed C and d contains a finite number
of nodes, in principle a TS algorithm could go on adding samples indefinitely. Thus one
must make a somewhat arbitrary choice of when to pause sampling and consider abstraction
refinements. A second obstacle is that because TS algorithms are not systematic, they might
be slow to explore a newly-refined subtree, especially if it is not part of the currently optimal
subtree. Thus one might want to tweak the exploration parameters or value estimates to
encourage exploration. These considerations add degrees of freedom to the design of the
algorithm, making it harder to isolate the effect of abstraction from the effects of particular
design choices. Nevertheless, most other work on abstract MCTS is based on TS algorithms,
not SS algorithms (Section 7), and we feel that abstraction refinement in TS is an important
area for further work.

6. Refinement Strategies

To instantiate the PAR procedure, we need to implement the Select and Refine opera-
tions. This section describes the strategies that we implemented for our experiments.

27

6.1 State Node Selection

Besides satisfying the conditions of Definition 9, the Select procedure should return a
state node in which a useful refinement is likely to be available. We investigated three
selection strategies in our experiments.

6.1.1 Breadth-First Selection

The first work with PARSS [Hostetler et al., 2015] used a breadth-first selection order. The
breadth-first order is a natural choice in discounted problems (γ < 1) because the values
of nodes near the root are less affected by discounting when calculating the root value.
Improving the value estimate in shallow nodes has an exponentially larger impact on the
root value than improving the estimate in deeper nodes. Since shallow nodes also have
exponentially more descendants than deep nodes, refining shallow nodes first causes the
refinement process to take large “steps” through the space of policy sets. Each refinement
adds many policies to the set of policies whose values the search tree model can estimate.
These large steps mean that more sampling will be done after each refinement, since a large
portion of the tree is affected. Breadth-first selection also has the practical benefit that
once a state node becomes pure, it never becomes impure again since its ancestors have
already been refined. This makes breadth-first selection the easiest to implement.

6.1.2 Uniform Selection

Breadth-first selection is a poor choice if relevant randomness only occurs deep in the tree.
For example, an action might cause a value-relevant random event after a delay of several
time steps. Breadth-first selection would waste samples refining nodes at depths less than
the time delay, where the abstraction is already sound.

Uniform selection avoids this problem by selecting an active state node to refine uni-
formly at random. An obvious shortcoming of uniform selection is that nodes at greater
depths are exponentially more likely to be selected, and refinements to deep nodes are less
likely to affect the value estimate in the root node. We do not expect uniform selection to
be the best choice, but it provides a useful comparison due to its naivete.

6.1.3 Heuristic Guided Selection

Most generally, we can define a priority ordering over the set of active abstract state nodes
and refine the highest-priority state nodes first. One obvious general-purpose heuristic is
to refine state nodes H in which there is high variance across the action value estimates
for the constituent ground states h ∈ H. Let q(h, a) denote the value estimate for action a
based on the subtree of the sample tree rooted at h. This quantity is defined recursively in
the usual way,

q(h, a) = R(h) +
1

m(h, a)

∑
h′∈k(h,a)

n(h′) max
a′∈A(h)

q(h′, a′). (24)

These values can be computed along with the statistics for the abstract states during the
Backup step (Algorithm 3, Line 30).

28

MCTS State Abstraction

Let σ2(H, a) = 1
M(H,a)

∑
h∈H n(h)

(
q(h, a)− q̄(H, a)

)2
denote the sample variance of the

set {q(h, a) : h ∈ H}, where q̄(H, a) = 1
M(H,a)

∑
h∈H n(h)q(h, a) is the average value of

action a over the samples in H. We can define a priority heuristic for an abstract state
node H by taking the average of these variances over all actions,

fσ2(H) =
1∑

a∈AM(H, a)

∑
a∈A

M(H, a)σ2(H, a). (25)

Refining state nodes for which fσ2 is large makes sense in light of Theorem 1, since if
fσ2(H) = 0, then H is part of a (0, 0)-consistent partition of the sampled collection of
ground states, and thus effectively sound.

Note that the breadth-first and uniform selection strategies can also be defined in terms
of heuristic functions,

fbf(H) =
1

`(H)
, (26)

funif(H) = 1, (27)

with ties being broken randomly.

6.2 State Abstraction Refinement

An abstraction relation is essentially a multilabel classifier, and many standard techniques
in classification or clustering could serve as a basis for refinement strategies. In our experi-
ments, we tried the following two approaches.

6.2.1 Random Refinement

Given an abstract state node H chosen by Select, the Random refinement strategy ran-
domly permutes the equivalence classes in H/⊥ and greedily divides them into two sets of
approximately equal size to form the refined abstraction. This option is fast to compute and
places no requirements on the ground state representation, but it does not exploit structure
in the ground state space. During search, previously unseen histories h are added to the
abstract state H that currently has the smallest value of N(H).

6.2.2 Decision Tree-based Refinement

If we have access to a set of features {φi(h)} for each state, we can take a more sophisticated
approach. The DT refinement strategy is based on an incrementally-constructed decision
tree. Each abstraction relation χ(H, a) is defined by a decision tree D. The leaves of D
define the members of a partition of the successors of Ha. Interior nodes are labeled with
a feature i and a threshold θ. The refinement operation adds a new split to D dividing the
leaf node corresponding to H into two new sets X and Y , with i and θ chosen greedily to
maximize an evaluation function f(X,Y).

The evaluation function f can be designed to encourage desired properties in the par-
titions. For example, if χ is such that H/χ is (0, 0)-consistent (Definition 2) then χ is
sound in sparse sampling (Theorem 1). We define an evaluation function that encourages

29

(0, 0)-consistency using upper bounds u(h) and u(h, a) for ground state values, where

u(h) = R(h) + γ

{
maxa∈A([h]χ) u(h, a) h is not a leaf

0 otherwise
,

u(h, a) =
1

m(h, a)

∑
h′∈k(h,a)

n(h′)u(h′).

Like the ground state q-function (24), u(h, a) and u(h) can be computed during the Backup
step. Using these bounds on the ground states, we define the evaluation function

f(X,Y) = |ū(X)− ū(Y, a∗)|+ |ū(Y)− ū(X, b∗)|,

where ū(H) = 1
n(H)

∑
h∈H n(h)u(h) and ū(H, a) = 1

n(H)

∑
h∈H n(h)u(h, a) are averages of

the ground state upper bounds, a∗ = arg maxa∈A ū(X, a), and b∗ = arg maxb∈A ū(Y, b).
Splits that maximize f will tend to put ground states that have different optimal actions
or different optimal values into different abstract states.

DT is similar to the mechanism used by Van den Broeck and Driessens [2011] in their
Tree Learning Search algorithm, as well as to the UTree mechanism [McCallum, 1996].
Variations on the DT theme could be created by replacing the “feature-value” splits with
a different decision rule. The decision tree could also be replaced with a different clustering
algorithm.

7. Related Work

Much of the theory of state abstraction in MDPs is based on the framework of stochastic
bisimilarity [Givan et al., 2003]. Bisimilarity is a strong equivalence criterion; two states are
bisimilar if and only if they cannot be distinguished by observing reward sequences received
under any policy. Bisimilarity metrics [Ferns et al., 2004] generalize bisimilarity to include
approximate equivalence. Li et al. [2006] provided a taxonomy of state equivalence criteria
that are weaker than bisimilarity but still sound. Their criteria of π∗- and a∗-irrelevance
are the basis of our (p, q)-consistency criterion (Definition 2). Van Roy [2006] derived regret
bounds with a similar form to Theorem 1 for value iteration with state aggregation.

The idea of adaptive refinement or revision of an abstraction has been the basis for
several MDP abstraction algorithms, including the G algorithm [Chapman and Kaelbling,
1991], the Parti-Game algorithm [Moore and Atkeson, 1995], and the UTree algorithm
[McCallum, 1996]. Baum et al. [2012] propose an adaptive state abstraction that is varied
according to heuristics including proximity to the agent and differences in action outcomes.
The abstraction refinement heuristics in all of these works are based on similar intuitions,
and many are similar to the heuristics we use in PARSS (Section 6). Unlike PARSS, these
algorithms maintain a complete policy for the current abstract problem and execute it,
whereas PARSS is an OP algorithm and thus replans every time step.

Most other work on abstraction in MCTS has focused on trajectory sampling algorithms.
PARSS is most similar to the TLS algorithm proposed by Van den Broeck and Driessens
[2011], which is based on UCT. TLS is targeted at continuous action spaces, and it works
by progressively refining the action continuum at individual state nodes in the tree, exactly
analogous to PARSS but applied to actions rather than states. The AS-UCT algorithm

30

MCTS State Abstraction

proposed by Jiang et al. [2014], also based on UCT, differs by taking a “batch” approach
to abstraction construction, as opposed to the incremental approach of TLS and PARSS.
In this batch approach, a tree is first sampled under the current abstraction (which be-
gins as ⊥). After the sampling period, an approximate abstraction is calculated from the
sampled tree. The process is then iterated using the new abstraction for sampling. Jiang
et al. [2014] derive suboptimality bounds for their abstractions using the theory of MDP
homomorphisms [Ravindran and Barto, 2004]. The ASAP-UCT algorithm of Anand et al.
[2015] extends ASAP-UCT to abstract 〈h, a〉 pairs, which enables the abstraction to take
advantage of action symmetries. OGA-UCT [Anand et al., 2016] is an incremental version
of ASAP-UCT that interleaves sampling and abstraction revision.

Like PARSS, algorithms in the AS-UCT family maintain an abstract “view” of the
samples drawn so far and use it to guide sampling. The abstraction used to construct these
views is then periodically revised. Besides being based on a different MCTS algorithm, the
major difference between PARSS and these abstract UCT algorithms is that in PARSS
the abstraction revision is always a refinement, while the AS-UCT algorithms revise their
abstractions to more closely approximate a target abstraction χ �⊥ with particular proper-
ties. A more minor difference is that in AS-UCT and its descendants, the abstract “view”
is a directed acyclic graph (DAG), while in PARSS it is a tree.

State abstraction has also been applied in classical planning to create a class of domain-
independent admissible heuristics called abstraction heuristics. This work began with pat-
tern databases [Culberson and Schaeffer, 1998; Edelkamp, 2001] and has been developed into
methods such as merge-and-shrink heuristics [Helmert et al., 2007]. Abstraction heuristics
compute a lower bound on the cost-to-go in the planning problem by solving a “relaxed”
version of the problem created through state abstraction. The heuristic is used to guide
search, but the search still takes place in the ground problem.

In addition to state abstraction, action abstraction and temporal abstraction have
also been applied in MCTS. The TLS algorithm already mentioned [Van den Broeck and
Driessens, 2011] builds a search tree over action equivalence classes. Pinto and Fern [2014]
use action pruning to speed up UCT and are able to learn pruning functions for which
the regret of the tree search procedure is bounded. Bai et al. [2015] extended UCT to
include temporal abstraction in the form of options [Sutton et al., 1999]. Their algorithm is
hierarchical, so that options can invoke sub-options, and so on recursively until reaching a
primitive action. Hierarchical action decomposition is commonly used in classical planning
in the form of hierarchical task networks (HTNs) [Erol et al., 1994; Nau et al., 2003].

The POMDP view of abstraction illuminates a connection between abstract tree search
and policy search algorithms for POMDPs. Sparse sampling itself derives from earlier work
using sample trees to evaluate policies during policy search [Kearns et al., 1999]. PARSS
essentially enumerates and evaluates policies in a certain order determined by the order
of abstraction refinements. By starting from the top abstraction >, PARSS evaluates
open-loop policies first, and then each abstraction refinement expands the policy search
set by including new policies that make more distinctions between states. Several works
have explored the use of open loop policies for value estimation in POMDPs. Weinstein and
Littman [2012] applied this idea in continuous action MDPs, drawing on theory developed by
Bubeck and Munos [2010]. Weinstein and Littman [2013] later developed a related algorithm
with a different optimization mechanism and applied it to legged locomotion tasks. Hauser

31

[2011] used forward search with open loop policies to plan in partially observable continuous
spaces.

The idea of aggregating histories rather than states also has roots in the study of
POMDPs. The UTree algorithm [McCallum, 1996] takes a progressive refinement ap-
proach to discovering an effective history abstraction. UTree constructs abstractions that
map histories to abstract states and builds an empirical model of the abstract MDP. A
policy for the abstract problem is then computed using standard methods. The theory of
such history-to-state abstractions has been further developed by Hutter [2014].

8. Experiments

Our experiments compare multple variations of PARSS to one another and to AFSSS
with fixed abstractions on a variety of problem domains. The complete source code used
in our experiments is available at https://github.com/jhostetler/jmcplan/releases/

tag/v0.1.

8.1 Algorithms

We tested six different variations of PARSS which were obtained as the cross product of
the three node selection strategies Breadth-First (BF), Uniform, and Variance (Sec-
tion 6.1) and the two refinement strategies DT and Random (Section 6.2). We compared
these PARSS variants to ⊥-FSSS and >-FSSS, and also to AFSSS with two random
abstractions of different granularities (rand-FSSS).

The random abstraction search algorithm is obtained by changing the definition of
the Sample function of AFSSS (Algorithm 3) to the one in Algorithm 7. The modified
Sample(H, a) procedure places novel ground successor states into their own equivalence
class until |K(H, a)| = B, where B is a parameter of the algorithm. Once |K(H, a)| = B,
subsequent novel ground successor states are added to the member H ′ ∈ K(H, a) with the
smallest value of N(H ′). The resulting tree has a maximum stochastic branching factor of
B, but is likely to incur a high abstraction error since the abstractions are random. The
purpose of rand-FSSS is to provide a simple baseline abstraction that is between ⊥ and >
in granularity.

8.2 Domains

Our problem pool includes the domains used by Hostetler et al. [2015] as well as several
additional problems.

8.2.1 Saving

The Saving problem [Hostetler et al., 2015] is designed specifically to illustrate the ef-
fect of certain structural features of the problem on the different tree search algorithms.
Saving is an episodic task in which the agent must accumulate wealth by choosing to ei-
ther save, invest, or borrow at each time step. The problem is parameterized by integers
〈pmin, pmax, Tb, Ti, Tm〉 where pmin ≤ pmax and Ti, Tb, Tm > 0. Its state space consists of
integers 〈p, tb, ti, tm〉, where p ∈ {pmin, pmax}, tb ∈ {0, Tb}, ti ∈ {0, Ti}, and tm ∈ {0, Tm}.

32

MCTS State Abstraction

Algorithm 7 Modified Sample procedure for rand-FSSS

1: procedure SampleRand(H, a)
2: for all h ∈ H do
3: while m(h, a) < d C

n(H)e do

4: Let h′ ∼ P (·|h, a)
5: n(h′)← n(h′) + 1

6: for all h′ ∈
⋃
h∈H k(h, a) do

7: if ∃G ∈ K(H, a), g ∈ G where h′ = g then
8: continue
9: else if |K(H, a)| < B then

10: Add new equivalence class {h′} to χ(H, a)
11: else
12: Let G = arg minH′∈K(H,a)N(H ′)
13: Modify χ(H, a) so that [h′]χ(H,a) = G.

The save action always yields an immediate reward of 1. The borrow action takes out
a “loan”, which gives an immediate reward of 2 and starts a countdown timer tb from Tb
to 0. The agent cannot borrow again while tb > 0. When tb reaches 0, the agent receives a
reward of −3, representing repaying the loan with interest. Thus the value of borrow is −1,
unless the episode will end before the loan is repaid. The invest action gives 0 immediate
reward, but gives the agent the right to take the sell action during a period of time in the
future. If invest is played at time t, then tm first counts down from Tm to 0, representing a
“maturity” period. When tm reaches 0, ti begins counting down from Ti to 0, and the sell
action is available as long as ti > 0. The sell action gives a reward of p, where p is a state
variable that evolves randomly over time according to p ∼ DiscreteUniform{pmin, pmax}.
The agent can have only one investment at a time.

We instantiate the Saving problem with parameters pmin = −4, pmax = 4, Ti = 4,
and Tb = 4. With these parameters, invest is nearly always optimal, but only if the agent
takes advantage of the investment period Ti in order to sell the investment for more than
E
[
p
]

= 0. Borrow is almost always the worst action, but the agent must search to a depth
of at least Tb to discover its negative consequences.

These parameter choices achieve two goals. First, there is a critical planning horizon of
Tb, before which the non-optimal borrow action appears to be optimal. This is expected to
cause >-FSSS to outperform ⊥-FSSS for small budgets, since >-FSSS can search deeper
with the same budget. Second, invest is optimal when it is available and thus Q∗(s, invest) >
Q∗(s, save), but there are some policies π — in particular, the optimal policy π∗> under
abstraction > — for which Qπ(s, invest) < Qπ(s, save). Because π∗> cannot discriminate
between states, it estimates the future value of sell as E

[
p
]

= 0. Thus the optimal policy
under > is to always save. When we estimate Q-values using this policy, we find that
Qπ
∗
>(s, invest) < Qπ

∗
>(s, save) because save gives a larger immediate reward. This is the

failure mode of open loop replanning noted by Weinstein and Littman [2012].

The addition of the maturity period Tm extends the original Saving problem described
in [Hostetler et al., 2015], which is recovered when Tm = 1. Our experiments use two

33

versions of Saving, with Tm = 1 and Tm = 3 respectively. We expect that setting Tm > 1
will negatively affect the performance of the breadth-first node selection order (Section 6.1).
Because the randomness in the problem is relevant only when the sell action is available,
refining the abstraction in state nodes where the investment has not yet matured will
decrease performance by increasing the size of the tree to no benefit. We would expect the
performance of the Uniform and Variance orderings not to be so affected.

8.2.2 Sailing

Sailing is based on a test domain used by Kocsis and Szepesvári [2006] and Jiang et al.
[2014]. The agent controls a sailboat on a 10× 10 grid and must navigate from the starting
position at (0, 0) to the goal at (9, 9). The boat can move in 8 directions, and the cost
of a move depends on the angle relative to the wind and the Euclidean distance to the
neighboring location. The wind also blows in one of 8 directions, and either stays the
same or switches to a neighboring direction uniformly at random every step. We used two
variations of Sailing, one in which the grid is empty and one in which random obstacles
are placed independently in each square with probability 0.2. We use the same random
problem instances for all of the algorithms to reduce variance.

8.2.3 Racetrack

Racetrack is a classic domain introduced by Barto et al. [1995]. The agent controls a
racecar in a grid world. Actions alter the velocity of the car by applying accelerations in
{−1, 0, 1}×{−1, 0, 1}. Both components of the acceleration are subject independently to a
“slip” probability of 0.2, which causes no acceleration to be applied in that direction. Each
time step has a fixed cost of −1, so the agent must get from the start to the goal in as few
steps as possible. We used both the Small and Large grid topologies of Barto et al. [1995].

8.2.4 Spanish Blackjack

Spanish Blackjack is a more complicated version of the casino game Blackjack. The different
rules of Spanish Blackjack cause episodes to be longer on average than in ordinary Blackjack,
but the gameplay is otherwise similar. We use an infinite deck so that card counting is not
helpful.

8.2.5 Academic Advising

Academic Advising (“Advising”) is a modification of the IPC problem of the same name
[Guerin et al., 2012]. The agent must take and pass all of the required courses in an academic
program. The courses are linked by prerequisite relationships, and the chance of passing a
course depends on how many of its prerequisites have been passed. We used MDP instance
1 from the IPC 2014. We implemented a generalized problem that has integer grades in the
range {0, . . . , g} to increase stochastic branching. The probability of passing a course given
prerequisite grades {p1, . . . , pn} is

P(pass|{pi}) = η + (1− η)

∑
i pi

(n+ 1)g
.

34

MCTS State Abstraction

If a course has no prerequisites, the agent passes with probability η0. If the agent passes,
it receives a random grade from DiscreteUniform{1, g}. The agent receives a penalty of −5
in each step if it has not achieved a grade of g∗ in all required courses, and there is an
action cost of −1 for taking a course for the first time and −2 for repeating a course. In
our experiments, we set g = 4, g∗ = 2, η = 0.2, and η0 = 0.8.

8.2.6 IPC Crossing Traffic

Crossing Traffic is a grid navigation problem in which the agent must cross several lanes of
traffic (obstacles that move right-to-left) without being hit. New obstacles spawn randomly
at the rightmost square of each lane, and obstacles exiting the leftmost square are removed.
The agent incurs a fixed step cost of −1. We used MDP instance 4 from the IPC 2014.

The IPC Crossing Traffic problem is encoded in a way that is particularly difficult for
planning. Getting hit prevents the agent from moving for the rest of the episode but gives
no immediate penalty. Thus a planner cannot identify getting hit as a bad outcome unless
it has already found a policy that reaches the goal with non-zero probability.

8.2.7 IPC Elevators

In Elevators, the agent controls one or more elevator cars and must use them to pick up
and drop off passengers. Passengers arrive stochastically at each floor where they wait until
an elevator stops that is going in their desired direction (up or down). Passengers going up
get off at the top floor and passengers going down get off at the bottom floor. The agent
incurs a penalty for each passenger that is not at its destination. We used MDP instance 7
from the IPC 2014.

Due to the limitations of the domain description language used for the IPC (RDDL;
[Sanner, 2010]), the Elevators domain does not track the number of passengers waiting or
in an elevator. Thus its stochastic branching factor is lower than might be expected. The
problem even becomes deterministic when all floors have passengers waiting, since further
arrival events at those floors have no effect.

8.2.8 IPC Tamarisk

In Tamarisk, the agent is trying to prevent the invasive tamarisk plant from colonizing a
river system. The world is a directed graph of reaches, each of which have a fixed number
of slots that each can be either unoccupied, occupied with a native plant, or occupied with
a tamarisk plant. Plants spread stochastically to unoccupied slots with a much higher
probability of spreading downriver. At each time step, the agent can eradicate a reach,
restore a reach, or do nothing. The eradicate action changes each tamarisk slot to empty
independently with a fixed probability. The restore action stochastically changes empty
slots to native, which prevents tamarisk plants from growing there. There is a per-slot and
per-reach penalty for the presence of tamarisk plants as well as action costs for non-default
actions. We used MDP instance 2 from the IPC 2014.

35

8.2.9 Tetris

Tetris is the classic videogame of stacking differently shaped blocks. It has quite a long
history in AI research (e.g. [Bertsekas and Ioffe, 1996; Gabillon et al., 2013]). Whereas in
the Tetris video game the player’s actions translate or rotate the falling block by one step, in
our version the agent positions the block in the top row at any horizontal position and with
any rotation, and the block then immediately drops to the bottom. This change makes the
problem easier for tree search because it greatly reduces plan lengths. The agent receives
a reward of 1 each time it “clears” a row of blocks. An episode terminates if an action
causes two blocks to overlap, which becomes unavoidable as the screen fills with uncleared
blocks. The shape and initial orientation of the next block to appear is chosen uniformly
at random, thus the agent must average over possible future sequences in order to find the
best location for the current block. We use the popular “Bertsekas features” [Bertsekas and
Ioffe, 1996] as the ground representation.

8.3 Methods

Since we are interested in anytime online planning, we compare the algorithms on each
domain for a range of sample budgets. Let ρM (A, b; θ) denote the average return of algorithm
A running on problem M with budget b and parameters θ. Given a problem M and range
of budgets B = {b1, . . . , bn}, we compute ρ∗M (A, b) = maxθ∈Θ ρM (A, b; θ) for each algorithm
A and each b ∈ B. The parameter search space Θ covers a range of values of the width
parameter C and depth parameter d. For the Random abstraction, Θ also covers different
settings of the stochastic branching factor B.

Hostetler et al. [2015] compared algorithms using a different criterion, similar in form
to ρ∗M (A) = maxθ∈Θ

∑
b∈B ρM (A, b; θ). The ρ∗M (A) criterion selects a single parameter set

that performs best over all budgets simultaneously, whereas ρ∗M (A, b) optimizes parameters
separately for each budget. We have come to view ρ∗M (A, b) as the superior criterion,
primarily because in ρ∗M (A) the parameter selection is sensitive to the range of values
spanned by the budgets in B. It would be unusual in practice to require a planning algorithm
to perform well over multiple orders of magnitude of the search budget with the same
parameters. Thus we find the “sum of maxes” criterion ρ∗M (A, b) to be more realistic.

For most problems, C ∈ {1, 2, 5, 10, 20, 50}, and d ∈ {i, i + 1, . . . , i + m} where i and
m are small integers. We expanded the range of C to {1, 2, 5, . . . , 100, 200} for Spanish
Blackjack due to its large stochastic branching factor. The specific ranges of d were chosen
based on pilot experiments. We attempted to expand the range of d until the best value of
d was not at either extreme of the range, but this was not feasible in all domains due to
memory limits. The random branching factor B was varied over either {2, 3, 5} or {2, 4}
depending on the domain. Early experiments used {2, 3, 5}, while in later experiments we
reduced this to {2, 4} to limit the parameter search space.

We chose not to perform any experiments with a time budget, and to instead use sample
budget as a proxy. This decision was based on earlier results indicating that the relative
performance of the algorithms was similar for both time and sample budgets [Hostetler
et al., 2015]. Time budget experiments take significantly longer to run due to the expensive
system calls needed to measure execution time accurately in our environment. Focusing on

36

MCTS State Abstraction

sample budgets allowed us to examine more domains and to more thoroughly optimize the
algorithm parameters.

9. Results

Our results support three main conclusions. First, that PARSS performed better overall
than any of the algorithms that used static representations. Second, that >-FSSS often
but not always outperformed ⊥-FSSS, and thus that some (but not all) of the advantage
of PARSS likely comes from its utilization of >-FSSS as a starting point. These results
are consistent with earlier experimental results with PARSS that appeared in [Hostetler
et al., 2015]. Third, the choice of Select and Refine implementations affects the perfor-
mance of PARSS. In particular, the combination Variance+DT appears to be best when
considering the entire problem set, while Uniform+Random is worst.

Note when interpreting the charts in Figures 3, 4, and 5 that some of the algorithms
are equivalent for certain parameterizations. For example, if C = 1 then all of the algo-
rithms are equivalent. Rather than conducting identical experiments for multiple equivalent
algorithms, we instead run a single experiment and proceed as though all of the equiva-
lent parameterizations produced exactly that result. When the lines in the charts overlap
exactly, it is because the overlapping algorithms are equivalent under their best parameter-
ization for that problem and budget.

9.1 Performance of PARSS

PARSS was the best algorithm overall in five problems: the two Saving problems, the two
Racetrack problems, and Advising (Figure 3). In all other domains (Figures 4 and 5),
PARSS performed as well as the best alternative algorithm. In Saving, we see that >-
FSSS plateaus at a suboptimal value, while ⊥-FSSS converges more slowly than PARSS.
>-FSSS also plateaus in Racetrack Large but ⊥-FSSS surpasses it only for the largest
budgets. Presumably a similar pattern would be apparent in Racetrack Small if that
experiment were to be continued to larger budgets. In Advising, all of the algorithms
improve steadily with increasing budgets, but PARSS is consistently best.

9.2 Performance of >-FSSS

There were five domains in which >-FSSS outperformed ⊥-FSSS over most of the range
of budgets (Figure 4). >-FSSS also performed well in the two Racetrack domains (Fig-
ure 3), although its performance began to plateau at larger budgets. We would expect
this plateau to occur in most domains if we continued the experiments to sufficiently large
budgets, since the optimal ground policy usually will not be representable in the >-abstract
state space.

>-FSSS was generally inferior to ⊥-FSSS on the Saving and Sailing problems, and
to a small extent also in Advising. This was the expected result in Saving because >-
FSSS cannot estimate the value of the invest action correctly. Note however that >-FSSS is
superior to ⊥-FSSS for the smallest budgets because ⊥-FSSS estimates the value of borrow
incorrectly due to horizon effects. In Sailing, >-FSSS cannot account for the randomly

37

25.0

27.5

30.0

32.5

35.0

37.5

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Saving (m = 1)

25.0

27.5

30.0

32.5

35.0

37.5

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Saving (m = 3)

−55

−50

−45

−40

−35

−30

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

20
00

00
0

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Racetrack (Large)

−35

−30

−25

−20
20

0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

20
00

00
0

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Racetrack (Small)

−200

−175

−150

−125

−100

−75

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Advising

Figure 3: Domains where PARSS outperformed all other algorithms.

38

MCTS State Abstraction

−39

−36

−33
20

0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Crossing

−1.00

−0.75

−0.50

−0.25

0.00

0.25

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Spanish Blackjack

−750

−700

−650

−600

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Tamarisk

0

2

4

6

8

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Tetris

Figure 4: Domains where >-FSSS outperformed Ground and Random. Note that all
PARSS variants performed equally as well as >-FSSS.

shifting wind and so its policy will always sail more or less directly toward the goal. This
accounts for its flat performance curve.

9.3 Performance of ⊥-FSSS

⊥-FSSS performed well on the two Sailing problems and on Elevators (Figure 5). We
attribute this performance to the fact that these domains have the smallest stochastic
branching factors. In Sailing, the branching factor is 3, while in Elevators it could be as
high as 26 if no passengers are waiting or as low as 1 if a passenger is waiting at every floor.
The fact that ⊥-FSSS with C = 1 was the best parameterization for Elevators indicates
that the latter, near-deterministic situation is much more common. Note that PARSS did
equally as well as ⊥-FSSS in these domains.

9.4 Comparing PARSS Variations

We can see from Figures 3, 4, and 5 that the gap between the best and worst variations of
PARSS tends to be small. Only in the two variations of Saving and in Advising is the
difference between PARSS variations comparable to the difference between PARSS and

39

−3.0

−2.9

−2.8

−2.7

−2.6

−2.5

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Sailing Empty

−4.00

−3.75

−3.50

−3.25

−3.00

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Sailing Random

−130

−120

−110

−100

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

Sample budget

R
et

ur
n

Algorithm

PARSS (best)
PARSS (worst)
Ground
Top
Random (Coarse)
Random (Fine)

Elevators

Figure 5: Domains where ⊥-FSSS was best. Note that all PARSS variants performed
equally as well as ⊥-FSSS. In the Elevators domain, the best performance occurred
when the width parameter was C = 1. Since all the algorithms are equivalent if C = 1, the
results shown are identical.

40

MCTS State Abstraction

2 3 4 5

CD

Variance+DT

BF+Random

BF+DT

Variance+Random

Uniform+DT

Uniform+Random

Figure 6: A critical difference plot [Demšar, 2006] showing the pairwise differences in per-
formance among the PARSS variants. The horizontal scale shows the average rank of
each algorithm, with smaller ranks indicating better performance. Algorithms connected
by a dark line had statistically identical performance at the p = 0.05 level. This plot was
produced by the R package scmamp [Calvo and Santafe, 2015].

⊥-FSSS. In Saving, this is because the problem is designed to favor PARSS in general,
and to favor the Variance priority ordering specifically when m > 1 (Figure 7).

We made a statistical comparison of the overall relative performance of the six PARSS
variations using Friedman’s test [Demšar, 2006], which detects an overall effect of the choice
of algorithm on performance across multiple problems. We consider each combination of
problem domain plus sample budget as a separate “experiment” for the purpose of the test,
giving a total of 123 experiments. We thus compare the PARSS variants on performance
across all sample budgets and problem domains. The test revealed strong support for an
overall effect of PARSS variation on performance (F (5, 610) = 10.06, p < 10−8).

After determining that an overall effect of algorithm choice exists in the results, we
examined the pairwise differences among the algorithms using Nemenyi’s test [Demšar,
2006] to correct for multiple comparisons. These pairwise comparisons are summarized
in Figure 6 using a critical difference plot [Demšar, 2006]. While there was no single
best or worst algorithm, we can see that in general the Uniform selection order per-
formed poorly. Variance+DT outperformed the largest number of other algorithms, but
both BF+DT and BF+Random had identical performance to Variance+DT whereas
Variance+Random was worse than Variance+DT. It may be that the breadth-first
selection order is less sensitive to the choice of refinement mechanism because the BF order
results in a larger number of state nodes becoming fully-refined, and in fully-refined state
nodes the refinement mechanism is no longer relevant.

9.5 Performance of rand-FSSS

The random abstractions typically had intermediate performance between ⊥-FSSS and >-
FSSS. It is useful to compare these results to the performance of the Uniform+Random
version of PARSS. The Uniform+Random variant may well produce intermediate trees
with similarly inaccurate abstractions as rand-FSSS, but although Uniform+Random
was the worst PARSS variant overall, rand-FSSS seldom outperformed it on any given

41

30

32

34

36
20

0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

Variance+DT
Variance+Random
BF+DT

BF+Random
Uniform+DT
Uniform+Random

Saving (m = 1)

30

31

32

33

34

35

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

Variance+DT
Variance+Random
BF+DT

BF+Random
Uniform+DT
Uniform+Random

Saving (m = 3)

Figure 7: Comparing all PARSS variations on the Saving domain. The BF order performs
poorly when Tm = 3 because it refines many abstraction relations that are already sound.

problem. This suggests that the tree exploration dynamics of PARSS may be qualitatively
different from those of AFSSS with a fixed abstraction.

Specifically, since PARSS begins by building a >-FSSS tree until convergence, the
first state nodes to be refined by PARSS will be nodes that were not pruned by >-FSSS.
This results in an implicit bias in the order in which the progressivly more-complex trees
are examined. Each refinement occurs in a state that was not pruned (or that became
un-pruned) in a previous step. It is possible that the dynamics of PARSS result in more
effective pruning than the dynamics of search with a fixed abstraction, even if the final
search trees are similar in terms of abstraction accuracy and average branching factor.

9.6 Stochstic Branching Factor vs. Best Algorithm

The four domains where >-FSSS was (tied for) best were also the four domains with by
far the largest minimum stochastic branching factors (Table 1). This suggests that it is
the raw reduction in tree size that plays a key role in the strong performance of >-FSSS.
The >-FSSS search is able to average over more random outcomes while still searching
to a reasonably large depth. There is no clear trend between branching and algorithm
performance in the other domains, suggesting that the performance gap between PARSS
and ⊥-FSSS on some of these domains is due to other structural features of the problem
in addition to the branching factor.

9.7 On the Performance of >-FSSS

Some of the performance advantage of PARSS can be attributed to the fact that PARSS
begins as a >-FSSS search, and >-FSSS often performs well by itself. We expect >-
FSSS to do well when rollout with an open-loop policy will correctly rank the values of
root actions. We can interpret >-FSSS as a policy rollout algorithm (Eq. 1) that uses an
approximately optimal open-loop policy as its evaluation policy. It is possible for the policy
rollout agent to behave optimally even if the evaluation policy π is not optimal, provided
that arg maxa∈AQ

∗(s, a) = arg maxa∈A Q̂
π(s, a). In Spanish Blackjack, for example,

42

MCTS State Abstraction

Table 1: Minimum and maximum stochastic branching factors of the experimental domains.
Note that the maximum branching factor of Spanish Blackjack might be higher than 524,
but this occurs only when completing the dealer’s hand and only extremely rarely.

Branching
Problem Min Max

Saving 9 9
PARSS bestRacetrack 1 4

Advising 5 5

Crossing 25 25
PARSS = >-FSSS

Blackjack 52 ≈ 524

Tamarisk 212 312

Tetris 40 40

Sailing 3 3
}
PARSS = ⊥-FSSS

Elevators 1 26

the simple evaluation policy π(s) = pass will correctly evaluate the majority of hit vs. pass
decisions. Although optimal play may dictate hitting more than once, in such cases hitting
once and then passing is often still better than passing immediately.

PARSS improved upon >-FSSS in 7 of the 12 problems. To explain this improvement,
we can begin by noting that most of these domains exhibit aspects of the Weinstein-Littman
structure [Weinstein and Littman, 2012], which is problematic for open-loop replanning.
The essence of the Weinstein-Littman structure is that the optimal action can give worse
return than a different action if it is not followed up by additional correct actions. Two
of the domains — Saving(1) and Saving(3) — were designed to ensure that >-FSSS
could not be optimal by explicitly including this structure. In Racetrack, the optimal
agent accelerates to as high a speed as possible before braking for a turn. Since braking
actions fail stochastically, the best open-loop “braking policy” must be conservative and
plan to execute enough consecutive braking actions to stop the car even if several actions
fail. If these braking actions end up not failing, the car is left moving slowly or even moving
backwards. The result is that the agent underestimates the value of driving in a riskier (i.e.
faster) way. A similar effect occurs in Sailing, where it may be optimal to sail away from
the goal temporarily in order to align the remaining path to the goal with the likely wind
direction.

The results in Advising are somewhat different, in that both >-FSSS and ⊥-FSSS
have similar performance while PARSS is superior. Examining the best parameters for each
algorithm reveals that >-FSSS is able to search with larger width and depth parameters (C
and d) than ⊥-FSSS for the same budgets. While >-FSSS incurs error due to abstraction
(Theorem 1), ⊥-FSSS estimates state node values from a smaller number of samples and
thus may incur error from the higher variance in its value estimates. PARSS may get the
best of both worlds in this domain, benefiting from the increased depth of >-FSSS as well
as the decreased abstraction error due to refinement.

43

9.8 Memory Consumption and Large Action Spaces

We encountered practical difficulties in Advising and especially in Tetris due to the
relatively large size of the action set (|A| = 10 in Advising and |A| = 40 in Tetris).
None of our algorithms make any attempt to reduce action branching. In the Tetris
experiments, the parameter search space Θ had to be curtailed because the search algorithms
were exceeding the 16GB memory limit of our hardware. Integrating both state and action
abstraction in the same algorithm is critical for scaling up to these types of problems, and
should be a focus of further work in abstract MCTS.

More generally, the main disadvantage of PARSS compared to AFSSS with a fixed
abstraction is that PARSS must retain more ground states in memory in case the abstract
state node that contains them is later chosen for refinement. When searching with a fixed
abstraction, the ground states associated with internal tree nodes can be discarded, since
no more successors will be drawn for those interior nodes (Section 5.4). Algorithms like
recursive best-first search [Korf, 1993] reduce memory usage by discarding tree nodes that
are not needed currently and regenerating them later if they are needed. This idea could
be incorporated into PARSS. It would be best applied to nodes on the search frontier in
PARSS, since a large proportion of state nodes are on the frontier and such nodes have no
descendants that would also need to be resampled.

9.9 Summary of Results

The experimental results indicate that PARSS is superior or equal to ⊥-FSSS on a range
of problem domains in terms of performance with a sample budget. Although we did not
compare the algorithms’ performance with a time budget, previous experiments [Hostetler
et al., 2015] have indicated that this pattern of relative performance remains the same in the
time budget setting. Since PARSS provides the same bounded error guarantees as ⊥-FSSS
(Proposition 8), there seems to be little reason not to use PARSS in preference to FSSS
[Walsh et al., 2010] and ordinary SS [Kearns et al., 2002]. Among the PARSS variants,
Variance+DT was consistently the best combination of node selection and refinement
criteria, and thus seems to be a good default choice among general-purpose heuristics.

10. Summary and Future Work

In this paper, we have consolidated and expanded upon earlier work on state abstraction
and progressive abstraction refinement in Monte Carlo tree search, and specifically in sparse
sampling. We first presented an expanded discussion of a theoretical bound on simple regret
due to abstraction in MCTS as well as algorithms for abstract sparse sampling [Kearns
et al., 2002] and UCT [Kocsis and Szepesvári, 2006] that first appeared in [Hostetler et al.,
2014]. This analysis provides guidance for designing or computing abstractions and reveals
differences in the interaction of abstraction with SS vs. TS search algorithms. We then
described the Progressive Abstraction Refinement for Sparse Sampling (PARSS) algorithm
[Hostetler et al., 2015], which addresses the problem of choosing the correct abstraction for
MCTS by progressively refining an initially coarse abstraction during search. Our analysis
of PARSS showed that it provides the same asymptotic performance guarantees as SS and
FSSS. We compared the original PARSS algorithm of Hostetler et al. [2015] as well as 5

44

MCTS State Abstraction

new variants of PARSS to FSSS with a variety of fixed abstractions (including the ground
abstraction) on a set of 12 decision-making problems, and found that PARSS outperformed
SS and FSSS. Drawbacks of PARSS include additional implementation complexity and
sometimes a higher memory footprint.

Progressive abstraction refinement is a promising basis for new kinds of MCTS algo-
rithms. Our immediate future work will investigate ways of incorporating new forms of
abstraction, including action pruning [Pinto and Fern, 2014] and temporal abstractions
such as options [Sutton et al., 1999; Bai et al., 2015], into the progressive refinement search
framework. Progressive refinement algorithms based on trajectory sampling should also be
explored. The abstraction refinement framework also provides a new mechanism for algo-
rithms that “learn to plan.” Such algorithms could learn to control the refinement process
to make it more effective. Data about abstraction refinements could also be collected and
used to improve the ground representation of the problem over time, facilitating the learn-
ing of reactive policies — which are highly sensitive to representation — for fragments of
the larger problem.

Acknowledgments

(Omitted from anonymized version)

45

Appendix A. Proofs

A.1 Proof of Theorem 1

Theorem 1. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP such that the maximum length of
a history in H is d = maxh∈H `(h) (which may be infinite). Let α = 〈χ, µ〉 be an abstraction

of T where χ is (p, q)-consistent and let δ
def
= δT/α. For any action a ∈ A,∣∣∣Q∗(s0, a)−Q∗α(s0, a)

∣∣∣ ≤ βγ(d)(p+ δq).

Proof. The proof is by structural induction on the tree of abstract histories, from the leaf
states upwards. Let Ω denote the set of leaf states, Ω = {H ∈ H/χ : ∀H ′ ∈ H/χ . H 6=
p(H ′)}. We generalize the desired error bound to apply to abstract states,

E(H, a) =
∣∣∣Q∗α(H, a)−

∑
h∈H

µ(H,h)Q∗(h, a)
∣∣∣.

Note that E({s0}, a) = |Q∗({s0}, a)−Q∗(s0, a)|.

Base case Consider a terminal state H ∈ Ω. Since terminal states have no successors,
we have

E(H, a) =
∣∣∣Q∗α(H, a)−

∑
h∈H

µ(H,h)Q∗(h, a)
∣∣∣ =

∣∣∣Rµ(H)−
∑
h∈H

µ(H,h)R(H)
∣∣∣ = 0. (28)

Inductive step We now consider interior states H ∈ Ω and assume the inductive hy-
pothesis E(H ′, a′) ≤ βγ(k)(p + δq) for all H ′ ∈ K(H, a) and all a′ ∈ A, where K(H, a) =
{H ′ ∈ H/χ : p(H ′) = H, a(H ′) = a} is the set of successors of Ha. Since the immediate
reward terms do not affect E(H, a) (Eq. 28), the difference between the optimal value in
the abstract tree and the true optimal value is the error in the discounted future return
estimates,

E(H, a) = γ
∣∣∣ ∑
H′∈H/χ

Pµ(H ′|H, a)V∗α(H ′)−
∑
h∈H

µ(H,h)
∑
h′∈H

P (h′|h, a)V ∗(h′)
∣∣∣.

We decompose the error as E(H, a) ≤ γ(EQ + Eχ), where,

EQ =
∣∣∣ ∑
H′∈H/χ

Pµ(H ′|H, a)V∗α(H ′)−
∑

H′∈H/χ

Pµ(H ′|H, a)
∑
h′∈H′

µ(H ′, h′)V ∗(h′)
∣∣∣

Eχ =
∣∣∣ ∑
H′∈H/χ

Pµ(H ′|H, a)
∑
h′∈H′

µ(H ′, h′)V ∗(h′)−
∑
h∈H

µ(H,h)
∑
h′∈H

P (h′|h, a)V ∗(h′)
∣∣∣.

EQ is the error due to using the abstract value function below the current node. Eχ is the
error introduced by aggregating states at the current level.

We analyze EQ first. By (p, ·)-consistency of χ, we have the bound∑
h′∈H′

µ(H ′, h′) max
a′∈A

Q∗(h′, a′)−max
a′∈A

∑
h′∈H′

µ(H ′, h′)Q∗(h′, a′) ≤ p. (29)

46

MCTS State Abstraction

Note that this difference is always non-negative. We relate this to E(H ′, a′) by observing
that for any H ′ ∈ H/χ,∣∣∣max

a′∈A
Q∗α(H ′, a′)−max

a′∈A

∑
h′∈H′

µ(H ′, h′)Q∗(h′, a′)
∣∣∣ ≤ max

a′∈A
E(H ′, a′), (30)

because of the general fact that |maxx f(x) − maxx g(x)| ≤ maxx |f(x) − g(x)| for real-
valued functions f and g on the same domain. Combining (29) and (30) with the triangle
inequality, we have∣∣∣max

a′∈A
Q∗α(H ′, a′)−

∑
h′∈H′

µ(H ′, h′) max
a′∈A

Q∗(h′, a′)
∣∣∣ ≤ p+ max

a′∈A
E(H ′, a′).

Applying the inductive hypothesis, we conclude that∣∣∣max
a′∈A
Q∗α(H ′, a′)−

∑
h′∈H′

µ(H ′, h′) max
a′∈A

Q∗(h′, a′)
∣∣∣ ≤ p+ βγ(k)(p+ δq)

for any h′ ∈ H. We then plug this bound into EQ to obtain

EQ =
∣∣∣ ∑
H′∈H/χ

Pµ(H ′|H, a)
[
V∗α(H ′)−

∑
h′∈H′

µ(H ′, h′)V ∗(h′)
]∣∣∣ ≤ p+ βγ(k)(p+ δq).

We now analyze the single-step abstraction error Eχ. This error comes from assigning
incorrect weights to ground states within the current abstract state. We can write the
second part of Eχ in terms of the exact update of the weight function (Eq. 6),∑

h∈H
µ(H,h)

∑
h′∈H

P (h′|h, a)V ∗(h′)

=
∑

H′∈H/χ

∑
h′∈H′

[∑
h∈H

µ(H,h)P (h′|h, a)
]
V ∗(h′)

=
∑

H′∈H/χ

∑
h′∈H′

Pµ(H ′|H, a)

[∑
h∈H µ(H,h)P (h′|h, a)

]
Pµ(H ′|H, a)

V ∗(h′)

=
∑

H′∈H/χ

Pµ(H ′|H, a)
∑
h′∈H′

[µ]∗(H ′, h′)V ∗(h′).

We can then express Eχ as

Eχ =
∑

H′∈H/χ

Pµ(H ′|H, a)
∣∣∣ ∑
h′∈H′

µ(H ′, h′)V ∗(h′)−
∑
h′∈H′

[µ]∗(H ′, h′)V ∗(h′)
∣∣∣.

Let D(H ′) denote the difference in values that appears in Eχ,

D(H ′) =
∣∣∣ ∑
h′∈H′

µ(H ′, h′)V ∗(h′)−
∑
h′∈H′

[µ]∗(H ′, h′)V ∗(h′)
∣∣∣.

47

Let v(H) = minh∈H V
∗(h) be the minimum value among states in H. By (·, q)-consistency

of χ, we have V ∗(h) − v(H) ≤ q for all h ∈ H. Let ∆(H,h) = V ∗(h) − v(H) − q
2 denote

this difference in value shifted to lie in the interval [−q/2, q/2]. We now express D(H ′) in
terms of ∆,

D(H ′) =
∣∣∣ ∑
h′∈H′

µ(H ′, h′)[v(H ′) +
q

2
+ ∆(H ′, h′)]−

∑
h′∈H′

[µ]∗(H ′, h′)[v(H ′) +
q

2
+ ∆(H ′, h′)]

∣∣∣
=
∣∣∣ ∑
h′∈H′

µ(H ′, h′)∆(H ′, h′)−
∑
h′∈H′

[µ]∗(H ′, h′)∆(H ′, h′)
∣∣∣

≤
∑
h′∈H′

∣∣∣∆(H ′, h′)
[
µ(H ′, h′)− [µ]∗(H ′, h′)

]∣∣∣
≤ q

2

∑
h′∈H′

∣∣∣µ(H ′, h′)− [µ]∗(H ′, h′)
∣∣∣

= q · 1

2

∥∥µ(H ′, ·)− [µ]∗(H ′, ·)
∥∥

1
= qδ(µ,H ′) ≤ δq.

Since Eχ is a convex combination of D(H ′) for different H ′, we conclude that Eχ ≤ δq.
Combining the two sources of error, we obtain,

EQ + Eχ ≤ βγ(k)(p+ δq) + p+ δq = (1 + βγ(k))(p+ δq). (31)

Since E(H, a) ≤ γ(EQ + Eχ), we multiply (31) by the discount factor γ to obtain

E(H, a) ≤ γ(1 + βγ(k))(p+ δq) = βγ(k + 1)(p+ δq)

for all H ∈ H/χ and all a ∈ A. This completes the inductive argument.

A.2 Proof of Proposition 2

Proposition 2. Let T = 〈H,A, P,R, γ, s0〉 be a history MDP and let χ be a (p, q)-consistent
history equivalence relation on H. Then the procedure AbstractSS(s0, C, d, χ), with

probability at least 1− (|A|C)d · 2e−2λ2C/(V dmax)2
, returns an action choice a∗ such that

V ∗(s0)−Q∗(s0, a
∗) ≤ 2βγ(d)(λ+ p+ δq),

where δ is the divergence (Eq. 7) of the completed empirical weight function µ̄+ derived from
the empirical weight function µ̄ computed by AbstractSS.

Proof. The proof is a small modification of the analysis of SS by Kearns et al. [2002]. Let
Q̂ and V̂ denote the value functions estimated by AbstractSS(s0, C, d, χ). Recall the
definition of the completed empirical weight function (Eq. 18),

µ̄+(H,h) =

{
µ̄(H,h) if H ∈ dom(µ̄),
µ∗(H,h) otherwise,

where dom(µ̄) ⊆ H/χ is the subset of the abstract history set on which µ̄ is defined.

48

MCTS State Abstraction

The error due to finite sampling in AbstractSS is given by

E(H, a) =
∣∣∣V̂(H)− V∗α(H)

∣∣∣
=
∣∣∣[∑
h∈H

n(h)R(h) +
1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)
]

−
[
Rµ̄(H) +

∑
H′∈H/χ

Pµ̄(H ′|H, a)V∗(H ′)
]∣∣∣

=
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)−
∑

H′∈H/χ

Pµ̄(H ′|H, a)V∗(H ′)
∣∣∣

Following the proof of Kearns et al. [2002], we introduce the quantity

U∗(H, a) = Rµ̄(H, a) + γ
1

C

∑
H′∈K(H,a)

N(H ′)V∗α(H ′).

The difference |Q∗α(H, a)− U∗(H, a)| captures the error due to finite sampling. Expanding
this difference and canceling the immediate reward terms gives∣∣∣Q∗α(H, a)− U∗(H, a)

∣∣∣ = γ
∣∣∣EH′∼Pµ̄(·|H,a)V∗α(H ′)− 1

C

∑
H′∈K(H,a)

N(H ′)V∗α(H ′)
∣∣∣,

which is the absolute difference between an expectation and an empirical average of C
iid samples. We can thus apply Hoeffding’s inequality (Hoeffding [1963], Theorem 2) to
conclude that

P
(∣∣∣Q∗α(H, a)− U∗(H, a)

∣∣∣ ≤ λ ≤ λ

γ

)
≤ 1− 2e−2λ2C/(V dmax)2

. (32)

Using this result, we decompose the sampling error in terms of U∗ as

E(H, a) ≤
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)− 1

C

∑
H′∈K(H,a)

N(H ′)V∗(H ′)
∣∣∣

+
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V∗(H ′)−
∑

H′∈H/χ

Pµ̄(H ′|H, a)V∗(H ′)
∣∣∣

≤ λ+
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)− 1

C

∑
H′∈K(H,a)

N(H ′)V∗(H ′)
∣∣∣.

Now we need to bound the difference between V∗ and the actual estimate V̂ that we
obtain from search. We bound this difference by bounding the difference in action values,

F (H, a) =
∣∣∣Q∗α(H, a)− Q̂(H, a)

∣∣∣.
We argue by induction that F (H0, a) ≤ βγ(d)λ.

49

Base case Consider an arbitrary leaf node H ∈ Ω. Since H has no successors, F (H, a) =
0 ≤ λ for all a ∈ A.

Inductive step Now consider an arbitrary interior node H ∈ Ω and action a ∈ A and
assume the inductive hypothesis F (H ′, a′) ≤ βγ(k)λ for all H ′ ∈ K(H, a) and a′ ∈ A. We
have

F (H, a) = γ
∣∣∣EH′∼Pµ̄(·|H,a)[V∗α(H ′)]− 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)
∣∣∣

≤ γ
(∣∣∣EH′∼Pµ̄(·|H,a)[V∗α(H ′)]− 1

C

∑
H′∈K(H,a)

N(H ′)V∗α(H ′)
∣∣∣

+
∣∣∣ 1

C

∑
H′∈K(H,a)

N(H ′)V∗α(H ′)− 1

C

∑
H′∈K(H,a)

N(H ′)V̂(H ′)
∣∣∣)

≤ γ(λ+ βγ(k)λ) = βγ(k + 1)λ.

This completes the inductive argument.

To obtain a probability bound in the root node, we require that the bound in (32) holds
in all action nodes simultaneously. Applying the union bound as in Lemma 4 of Kearns
et al. [2002] we conclude that with probability at least 1− (|A|C)d ·2e−2λ2C/(V dmax)2

, we have∣∣∣Q̂(H0, a)−Q∗α(H0, a)
∣∣∣ ≤ βγ(d)λ (33)

in the root state H0 for all a ∈ A. This bounds the error due to finite sampling.

To complete the proof, we combine (33) with Theorem 1. We have∣∣∣Q̂(H0, a)−Q∗(h0, a)
∣∣∣ ≤ ∣∣∣Q̂(H0, a)−Q∗α(H0, a)

∣∣∣+
∣∣∣Q∗α(H0, a)−Q∗(h0, a)

∣∣∣
≤ βγ(d)λ+ βγ(d)(p+ δq)

= βγ(d)(λ+ p+ δq).

By the same reasoning as in Corrolary 1, the above value estimation error bound implies
the regret bound

V ∗(s0)−Q∗(s0, a
∗) ≤ 2βγ(d)(λ+ p+ δq),

where a∗ = arg maxa∈A Q̂(H0, a).

A.3 Proof of Proposition 4

Proposition 4. Consider a history MDP T augmented with the special action ω and an
abstraction α = 〈χ, µ∗〉 of T composed of equivalence relation χ and the corresponding

optimal weight function µ∗. Let H ′ be a random variable H ′ ∼ Pξα(·|h0) for a fixed abstract
policy ξ ∈ Π(T/α), and let h′ be a random variable such that h′ ∼ P ↓ξ(·|h0). Then the
random variable [h′]χ is equal in distribution to H ′.

50

MCTS State Abstraction

Proof. Recall that the probability of an abstract history H = H0a0H1 . . . adHd under ab-
straction α and abstract sampling policy ξ is

Pξα(H|h0) = ξ(H,ω)
d−1∏
t=0

ξ(Ht, at)Pµ(Ht+1|Ht, at),

and the probability of a ground history h = h0a1h1 . . . adhd under sampling policy π is

P π(h|h0) = π(h, ω)

d−1∏
t=0

π(ht, at)P (ht+1|ht, at).

We need to show that for h ∼ P ↓ξ and H ∼ Pξα, [h]χ =d H. This is equivalent to the

condition that
∑

h∈H P
↓ξ(·|h0) = Pξα(·|h0).

The proof is simpler when we consider a slightly different pair of distributions,

Wξ
α(H|h0) =

d−1∏
t=0

ξ(Ht, at)Pµ(Ht+1|Ht, at),

W π(h|h0) =
d−1∏
t=0

π(ht, at)P (ht+1|ht, at).

We call these the prefix distributions because they give the probability of generating a
history that starts with H or h. They are related to the history distributions by

Pξα(H|h0) = ξ(H,ω)Wξ
α(H|h0),

P π(h|h0) = π(h, ω)W π(h|h0).

By assumption, the ground policy is ↓ ξ. For this choice of policy, we have that for all
h ∈ H, ↓ ξ(h, ω) = ξ([h]χ, ω) = ξ(H,ω). Thus

∑
h∈H P

↓ξ(h) = Pξα(H) if and only if∑
h∈HW

↓ξ(h) =Wξ
α(H). We prove the latter fact by induction on the length of the history

prefix.

Base case Let H0 = {h0} be the initial state. Since H0 is a singleton we have trivially

that Wξ
α(H0) = 1 = W ↓ξ(h0).

Inductive step Consider a history H = H0a1H1 . . . akHk. Assume the inductive hy-
pothesis

∑
hk−1∈Hk−1

W ↓ξ(hk−1|h0) = Wξ
α(Hk−1|h0). Again using the definition of ↓ξ, we

have ∑
hk∈Hk

W ↓ξ(hk) =
∑
hk∈Hk

∑
hk−1∈Hk−1

W ↓ξ(hk−1)ξ([hk−1]χ, ak)P (hk|hk−1, ak)

= ξ(Hk−1, ak)
∑

hk−1∈Hk−1

W ↓ξ(hk−1)
∑
hk∈Hk

P (hk|hk−1, ak).

51

Now we want to isolate a factor of
∑

hk−1∈Hk−1
W ↓ξ(hk−1) so that we can use the inductive

hypothesis. We do this by multiplying by 1:

ξ(Hk−1, ak)
∑

hk−1∈Hk−1

W ↓ξ(hk−1)
∑
hk∈Hk

P (hk|hk−1, ak)

= ξ(Hk−1, ak)

∑
g∈Hk−1

W ↓ξ(g)∑
g∈Hk−1

W ↓ξ(g)

∑
hk−1∈Hk−1

W ↓ξ(hk−1)
∑
hk∈Hk

P (hk|hk−1, ak)

= ξ(Hk−1, ak)Wξ
α(Hk−1)

∑
hk−1∈Hk−1

W ↓ξ(hk−1)∑
g∈Hk−1

W ↓ξ(g)

∑
hk∈Hk

P (hk|hk−1, ak) (*)

= ξ(Hk−1, ak)Wξ
α(Hk−1)

∑
hk−1∈Hk−1

µ∗(Hk−1, hk−1)
∑
hk∈Hk

P (hk|hk−1, ak) (**)

=Wξ
α(Hk−1)ξ(Hk−1, ak)Pµ∗(Hk|Hk−1, ak)

=Wξ
α(Hk),

where in (*) we used the inductive hypothesis and in (**) we used the definition of µ∗

(Definition 3),

µ∗(H,h) = P(h|H) =
P(H,h)

P(H)
= 1h∈H

W ↓ξ(h)∑
g∈HW

↓ξ(g)
.

This completes the inductive argument, and we conclude that for H ′ ∼ Pξα(·|h0) and
h′ ∼ P ↓ξ(·|h0), we have [h′]χ =d H ′, where α = 〈χ, µ∗〉.

52

MCTS State Abstraction

Appendix B. Abstract TS and Abstract UCT

Algorithm 8 implements a a generic abstract TS algorithm. We also show the concrete
implementations of Select, Evaluate, and Update that together create the abstract
UCT algorithm.

Algorithm 8 Abstract Trajectory Sampling (with UCT Variation)

1: procedure AbstractTS(s0)
2: while time remains do
3: Visit(s0)

4: return arg maxa∈AQ({s0}, ·)
5: procedure Visit(h)
6: if h is terminal then
7: return 0
8: Let H = [h]χ
9: if N(H) = 0 then

10: Let v = Evaluate(h)
11: else
12: Let a = Select(H)
13: Let h′ ∼ P (·|h, a)
14: Let q = Visit(h′)
15: Let v = R(h) + γq

16: Update(H, a, v)
17: n(h)← n(h) + 1
18: return v

19: procedure Select(H)
20: if ∃a ∈ A : M(H, a) = 0 then
21: return a
22: Let U(H, a) = Q(H, a) + c

√
logN(H)
M(H,a)

23: return arg maxa∈A U(H, a)

24: procedure Evaluate(h)
25: if `(H) = D then
26: return 0
27: else
28: Let a ∼ Uniform(A)
29: Let h′ ∼ P (·|h, a)
30: return R(h) + γ Evaluate(h′)

31: procedure Update(H, a, v)

32: Q(H, a)← Q(H, a) + v−Q(H,a)
n(H,a)

Note that all calls to Select happen before all calls to Update. Thus the sampling
policy is fixed while the next trajectory is being generated and Proposition 4 applies.
AbstractTS therefore operates in the abstract state space T/〈χ, µ∗〉 for any choice of
χ. Contrast this with AbstractSS, for which µ is estimated and therefore subject to
error.

53

Appendix C. Refining the Weight Function

The ordering of abstractions defined in Section 5.1 addresses only the abstraction relation
portion of the state abstraction. A similarly natural relationship can be defined for the
corresponding weight functions.

Definition 12. Consider two abstractions α = 〈χ, µ〉 and β = 〈ψ, ν〉 where ψ � χ. The
refinement of µ with respect to ψ, denoted ν = µ/ψ, is the weight function ν : H/ψ×H 7→
[0, 1] such that for each H ∈ H/χ, for each G ∈ H/ψ, for all g ∈ H,

ν(G, g) = 1g∈G
µ(H, g)∑
h∈G µ(H,h)

.

Essentially, given abstraction α = 〈χ, µ〉 and an abstraction relation ψ � χ, one con-
structs µ/ψ by re-normalizing the probability mass given by µ to the new, smaller equiv-
alence classes with respect to ψ. Note that if µ is the set of empirical probability mass
functions µ̄ with respect to χ, then µ/ψ is just the set of empirical probability mass func-
tions with respect to ψ. The PARSS algorithm (Section 5.2) uses this weight refinement
strategy implicitly.

The refinement of an optimal weight function is the optimal weight function in the
refined state space.

Proposition 10. Consider two abstractions α = 〈χ, µ〉 and β = 〈ψ, ν〉 where ψ � χ and µ
is the optimal weight function for T/α (ie. µ = [µ]∗). Then ν = µ/ψ is the optimal weight
function for T/β (ie. ν = [ν]∗).

Proof. Let H ∈ H/χ and let G ∈ H/ψ be such that G ⊆ H. Begin by noting that∑
g∈G

µ∗(H, g)
def
=
∑
g∈G

P(g|H) = P(G|H).

The definition of optimal weight functions in terms of probabilities allows us to simplify,

ν(G, g)
def
= 1g∈G

µ∗(H, g)∑
h∈G µ

∗(H,h)
= 1g∈G

P(g|H)

P(G|H)
= 1g∈G

P(H, g)

P(H)P(G|H)
= 1g∈G

1g∈HP(g)

P(G)P(H|G)

Now, since G ⊆ H, we have P(H|G) = 1 and 1g∈G1g∈H = 1g∈G. We conclude

1g∈G
1g∈HP(g)

P(G)P(H|G)
= 1g∈G

P(g)

P(G)

def
= ν∗(G, g).

For a non-optimal weight function µ 6= µ∗, ν = µ/ψ may be such that δT/〈ψ,ν〉 > δT/〈χ,µ〉.
Consider the following MDP, for which the edge labels denote transition probabilities:

h0

h1

h2

h3

V ∗ = q/2

V ∗ = −q/2

V ∗ = 0

3/6

1/6

2/6

H/χ

h0

h1

h2

h3

V ∗ = q/2

V ∗ = −q/2

V ∗ = 0

3/6

1/6

2/6

H/ψ

54

MCTS State Abstraction

The abstract state H = {h1, h2, h3} is (0, q)-consistent. If µ∗(H) = [3/6, 1/6, 2/6]
but µ(H) = [1/3, 1/3, 1/3], then δT/〈χ,µ〉(H) = 1

2‖µ(H)− µ∗(H)‖1 = 1/6. We have an
abstraction error of q · 1/6 in H. Now consider H/ψ = {{h1, h2}, {h3}} and let ν = µ/ψ.
We have ν({h1, h2}) = [1/2, 1/2] while ν∗({h1, h2}) = [3/4, 1/4], thus δT/〈ψ,ν〉({h1, h2}) =
3/8 > 1/6. Since {h1, h2} is (0, q)-consistent like H, the abstraction error in {h1, h2} is
q · 3/8 > q · 1/6.

From this example we see that abstraction refinement can increase error due to δq if the
optimal weight function µ∗ is not available, at least for the most obvious method of refining
the weight function. Nevertheless, repeated abstraction refinement will eventually produce
the ground abstraction 〈⊥, µ⊥〉, which is sound. Our algorithms rely on this eventual
convergence to ⊥ in order to provide performance guarantees.

55

References

Anand, A., Grover, A., Mausam, and Singla, P. (2015). ASAP-UCT: Abstraction of state-
action pairs in UCT. In International Joint Conference on Artificial Intelligence (IJCAI).

Anand, A., Noothigattu, R., Mausam, and Singla, P. (2016). OGA-UCT: On-the-go ab-
stractions in UCT. In International Conference on Automated Planning and Scheduling
(ICAPS).

Bai, A., Srivastava, S., and Russell, S. (2015). Markovian state and action abstractions for
MDPs via hierarchical MCTS. In International Joint Conference on Artificial Intelligence
(IJCAI).

Balla, R.-K. and Fern, A. (2009). UCT for tactical assault planning in real-time strategy
games. In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI).

Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1-2):81–138.

Baum, J., Nicholson, A. E., and Dix, T. I. (2012). Proximity-based non-uniform abstractions
for approximate planning. Journal of Artificial Intelligence Research, 43:477–522.

Bertsekas, D. P. and Castañon, D. A. (1999). Rollout algorithms for stochastic scheduling
problems. Journal of Heuristics, 5(1):89–108.

Bertsekas, D. P. and Ioffe, S. (1996). Temporal differences-based policy iteration and ap-
plications in neuro-dynamic programming. Technical report, Massachusetts Institute of
Technology.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,
P., Tavener, S., Perez, D., Samothrakis, S., and Colton, S. (2012). A survey of Monte
Carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
Games, 4(1):1–43.

Bubeck, S. and Munos, R. (2010). Open loop optimistic planning. In Conference on Learning
Theory (COLT).

Calvo, B. and Santafe, G. (2015). scmamp: Statistical comparison of multiple algorithms
in multiple problems. The R Journal. https://journal.r-project.org/.

Chang, H. S., Givan, R., and Chong, E. K. (2004). Parallel rollout for online solution
of partially observable Markov decision processes. Discrete Event Dynamic Systems,
14(3):309–341.

Chapman, D. and Kaelbling, L. P. (1991). Input generalization in delayed reinforcement
learning: An algorithm and performance comparisons. In International Joint Conference
on Artificial Intelligence (IJCAI).

Culberson, J. C. and Schaeffer, J. (1998). Pattern databases. Computational Intelligence,
14(3).

56

MCTS State Abstraction

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research (JMLR), 7:1–30.

Edelkamp, S. (2001). Planning with pattern databases. In Proceedings of the 6th European
Conference on Planning (ECP).

Erol, K., Hendler, J., and Nau, D. S. (1994). HTN planning: Complexity and expressivity.
In AAAI Conference on Artificial Intelligence, volume 94, pages 1123–1128.

Ferns, N., Panangaden, P., and Precup, D. (2004). Metrics for finite Markov decision
processes. In Conference on Uncertainty in Artificial Intelligence (UAI), pages 162–169.

Gabillon, V., Ghavamzadeh, M., and Scherrer, B. (2013). Approximate dynamic program-
ming finally performs well in the game of Tetris. In Advances in Neural Information
Processing Systems (NIPS).

Gelly, S. and Silver, D. (2007). Combining online and offline knowledge in UCT. In Inter-
national Conference on Machine Learning (ICML).

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model minimization
in Markov decision processes. Artificial Intelligence, 147(1):163–223.

Guerin, J. T., Hanna, J. P., Ferland, L., Mattei, N., and Goldsmith, J. (2012). The academic
advising planning domain. In Workshop on the International Planning Competition (WS-
IPC) at ICAPS.

Guo, X., Singh, S., Lee, H., Lewis, R. L., and Wang, X. (2014). Deep learning for real-time
Atari game play using offline Monte-Carlo tree search planning. In Advances in Neural
Information Processing Systems (NIPS).

Hansen, E. A. (1998). Solving POMDPs by searching in policy space. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 211–219.

Hauser, K. (2011). Randomized belief-space replanning in partially-observable continuous
spaces. In Algorithmic Foundations of Robotics IX, pages 193–209. Springer.

Helmert, M., Haslum, P., and Hoffmann, J. (2007). Flexible abstraction heuristics for
optimal sequential planning. In International Conference on Automated Planning and
Scheduling (ICAPS).

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. Jour-
nal of the American statistical association, 58(301):13–30.

Hostetler, J., Fern, A., and Dietterich, T. (2014). State aggregation in Monte Carlo tree
search. In AAAI Conference on Artificial Intelligence.

Hostetler, J., Fern, A., and Dietterich, T. (2015). Progressive abstraction refinement for
sparse sampling. In Conference on Uncertainty in Artificial Intelligence (UAI).

Hutter, M. (2014). Extreme state aggregation beyond MDPs. In International Conference
on Algorithmic Learning Theory.

57

Jiang, N., Singh, S., and Lewis, R. (2014). Improving UCT planning via approximate
homomorphisms. In International Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A sparse sampling algorithm for near-
optimal planning in large Markov decision processes. Machine Learning, 49(2-3):193–208.

Kearns, M. J., Mansour, Y., and Ng, A. Y. (1999). Approximate planning in large POMDPs
via reusable trajectories. In Advances in Neural Information Processing Systems (NIPS),
pages 1001–1007.

Keller, T. and Helmert, M. (2013). Trial-based heuristic tree search for finite horizon MDPs.
In International Conference on Automated Planning and Scheduling (ICAPS).

King, B., Fern, A., and Hostetler, J. (2013). On adversarial policy switching with experi-
ments in real-time strategy games. In International Conference on Automated Planning
and Scheduling (ICAPS).

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In European
Conference on Machine Learning (ECML).

Korf, R. E. (1993). Linear-space best-first search. Artificial Intelligence, 62(1):41–78.

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a unified theory of state abstraction
for MDPs. In International Symposium on Artificial Intelligence and Mathematics.

McCallum, A. K. (1996). Reinforcement learning with selective perception and hidden state.
PhD thesis, University of Rochester.

McMahan, H. B., Likhachev, M., and Gordon, G. J. (2005). Bounded real-time dynamic
programming: RTDP with monotone upper bounds and performance guarantees. In
International Conference on Machine Learning (ICML).

Meuleau, N., Kim, K.-E., Kaelbling, L. P., and Cassandra, A. R. (1999). Solving POMDPs
by searching the space of finite policies. In Conference on Uncertainty in Artificial Intel-
ligence (UAI), pages 417–426.

Moore, A. W. and Atkeson, C. G. (1995). The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning, 21(3):199–
233.

Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W., Wu, D., and Yaman, F.
(2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence Research
(JAIR), 20:379–404.

Pinto, J. and Fern, A. (2014). Learning partial policies to speedup MDP tree search. In
Conference on Uncertainty in Artificial Intelligence (UAI).

Poupart, P. and Boutilier, C. (2003). Bounded finite state controllers. In Advances in
Neural Information Processing Systems (NIPS).

58

MCTS State Abstraction

Ravindran, B. and Barto, A. (2004). Approximate homomorphisms: A framework for
nonexact minimization in Markov decision processes. In International Conference on
Knowledge-Based Computer Systems.

Russell, S. and Norvig, P. (2010). Artificial intelligence: A modern approach. Prentice Hall.

Sanner, S. (2010). Relational dynamic influence diagram language (RDDL): Language
description. Technical report, Australian National University.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484–489.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence,
112(1):181–211.

Van den Broeck, G. and Driessens, K. (2011). Automatic discretization of actions and states
in Monte-Carlo tree search. In ECML/PKDD Workshop on Machine Learning and Data
Mining in and around Games.

Van Roy, B. (2006). Performance loss bounds for approximate value iteration with state
aggregation. Mathematics of Operations Research, 31(2):234–244.

Walsh, T. J., Goschin, S., and Littman, M. L. (2010). Integrating sample-based planning
and model-based reinforcement learning. In AAAI Conference on Artificial Intelligence.

Weinstein, A. and Littman, M. L. (2012). Bandit-based planning and learning in continuous-
action Markov decision processes. In International Conference on Automated Planning
and Scheduling (ICAPS).

Weinstein, A. and Littman, M. L. (2013). Open-loop planning in large-scale stochastic
domains. In AAAI Conference on Artificial Intelligence.

59

